https://journals.duikt.edu.ua/index.php/dataprotect/issue/feed Modern Information Security 2025-06-28T17:48:58+00:00 Open Journal Systems <p><img src="/public/site/images/0675046012/Обкладинка_2024_№4_25.jpg"></p> <p><strong>Topics</strong>: information security, information technology<br> <strong>Founders</strong>: State University of Telecommunications<br> <strong>Address</strong>: st. Solomianska, 7, Kyiv, 03110, Ukraine<br> <strong>Phones</strong>: +380 (44) 249 25 35<br> <strong>Email</strong>:&nbsp;<a href="mailto:szi.journal@gmail.com">szi.journal@gmail.com<br></a><strong>Foundation year</strong>: 2010<br> <strong>Certificate of state registration</strong>: Series KV № 20254-10654 PR from June 10, 2014<br> <strong>Registration at the Ministry of Education and Science of Ukraine</strong>: Order No. 1021 dated October 7, 2015 (Annex 11, p. 110). The journal is included to the List of scientific professional editions of Ukraine, in which the results of dissertations for the scientific degrees of a Doctor and a Philosophy Doctor in the field&nbsp;<strong>of technical sciences&nbsp;</strong>may be published.</p> https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3228 Title 2025-06-28T17:46:20+00:00 admin admin szi@duikt.edu.ua <p>Title</p> 2025-06-28T11:50:50+00:00 ##submission.copyrightStatement## https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3229 Content 2025-06-28T17:46:34+00:00 admin admin szi@duikt.edu.ua <p>Content</p> 2025-06-28T11:52:57+00:00 ##submission.copyrightStatement## https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3230 MODELING OF PROCESSES IN AN OPEN-CLOSED AUTOMATIC CONTROL SYSTEM WITH HYDRAULIC DRIVE 2025-06-28T17:46:12+00:00 Кузавков В. В. (Kuzavkov V.V.) szi@duikt.edu.ua Романенко М. М. (Romanenko M.M.) szi@duikt.edu.ua Лапа В. І. (Lapa V.I.) szi@duikt.edu.ua <p>The article investigates the properties of an open-type automatic control system as a component of a unified stabilization<br>system for a firearm on a highly mobile transport base. A hydraulic drive is proposed as an actuator in the stabilization system.<br>According to the results of the preliminary analysis, this type of actuator satisfies the conditions for the stabilization system to<br>function. To study the dynamics of processes in an open-type automatic control system (ACS), the transfer function of the<br>system is derived in the work. The stages of mathematical modeling of the components of an open-type automatic control system<br>are presented: a control signal source, an electromagnetic valve for controlling the spool mechanism, and a hydraulic cylinder.<br>The control signal source is presented as a linear dynamic link. The dynamics of the electromagnetic valve is modeled by a firstorder equation that takes into account the inertia of converting an electrical signal into a working fluid flow rate. The hydraulic<br>cylinder is presented as an integrating link that establishes a connection between the fluid flow rate and the piston movement<br>(load). Based on the transfer functions of the components, the overall transfer function of the system is determined, taking into<br>account inertial characteristics (mass of moving parts), damping factors and hydraulic dynamics. The transient and frequency<br>characteristics of the open-loop automatic control system are simulated, which confirms the adequacy of the model. The<br>proposed approach can be used not only for analyzing the stability and quality of control of hydraulic drives in industrial and<br>transport vehicles, but also as recommendations for building hydraulic drives under the guidance of mathematical models or<br>artificial intelligence.<br><strong>Keywords</strong>: automatic control system, transfer function, hydraulic cylinder, solenoid valve, transient, frequency<br>characteristics, mathematical model.</p> <p><strong>References</strong><br>1. Кузавков В.В., Поляк I. Є. Аналіз транспортної бази для встановлення стабілізованої платформи<br>нетипової артилерійської системи. Комп'ютерно-інтегровані технології: освіта, наука, виробництво. 2023. № 50.<br>С. 15–20. DOI: https://doi.org/10.36910/6775-2524-0560-2023-50-02.<br>2. Кузавков В.В. Лапа В.І. Солодовник В.І. Інтеграція об’єкта ТЗ-ВЗ в автоматизовану систему<br>управління вогнем артилерії. Вісник Київського національного університету імені Тараса Шевченка. 2024. №84.<br>С. 82-90. DOI: https://doi.org/10.17721/2519-481X/2024/84-09.<br>3. Kuzavkov V. V., Gostev V. I. Parametric Synthesis of Digital Pseudolinear Correcting Devices. Journal of<br>Automation and Information Sciences. 1997. Vol.29, no.2-3. P.133-136. DOI: https://doi.org/10.1615/jautomatinfscien.v29.i2-3.170.<br>4. Ірлик Ю. А., Стопакевич А. О. Аналіз перспектив застосування технологій штучного інтелекту для<br>побудови автономних промислових систем автоматичного керування. Автоматизація технологічних і бізнеспроцесів. 2024. № 4. С. 8–13. DOI: https://doi.org/10.15673/atbp.v15i4.2578.<br>5. Organization Method of Computing Processes in Multiprocessor Computing Systems [Електронний ресурс]<br>// Intelligent Technologies and Robotics. 2024. Режим доступу: https://doi.org/10.1007/978-3-031-84228-3_<br>6. Міщук Д. О. Дослідження динамічної моделі гідравлічного циліндра об’ємного гідроприводу. Гірничі,<br>будівельні, дорожні та меліоративні машини: зб. наук. праць. 2016. № 87. С. 74–81.<br>7. Бурєнніков Ю. А., Козлов Л. Г., Репінський С. В. Вибір параметрів системи керування гідроприводом<br>з насосом змінної продуктивності на основі дослідження його стійкості. Вісник Вінницького політехнічного<br>інституту. 2006. № 6. С. 211–217.<br>8. Крутіков Г. А., Стрижак М. Г. Синтез параметрів електрогідравлічного слідкуючого привода виходячи<br>з заданої точності позиціювання робочого органа, швидкодії і характеру перехідного процесу. Вісник<br>Національного технічного університету «ХПІ». 2022. № 2. С. 35–40. DOI: 10.20998/2079-0775.2022.2.04.<br>9. Маловичко В. К., Брунеткін О. І. Дослідження автоматичної системи регулювання рівня води в групі<br>підігрівачів високого тиску. Інформатика, обчислювальна техніка та автоматизація. ТНУ імені В. І. Вернадського,<br>2021. № 3, Том 32(71). С. 117–122. DOI: 10.32838/2663-5941/2021.3/19.<br>10. Голубенко О. Л., Романченко О. В., Соколов В. І., Степанова О. Г. Методика проектного розрахунку<br>автоматичного електрогідравлічного приводу обертального руху та об’ємного регулювання. Вісник<br>Східноукраїнського національного університету. ВСНУ імені Володимира Даля, 2022. № 2(272). С. 15–22. DOI:<br>10.33216/1998-7927-2022-272-2-15-22.</p> 2025-06-28T12:03:03+00:00 ##submission.copyrightStatement## https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3231 IMPROVED METHOD FOR DETECTING FALSE INFORMATION BASED ON EXPERT ASSESSMENT 2025-06-28T17:46:21+00:00 Лаптєв О. А. (Laptiev O.A.) szi@duikt.edu.ua Лаптєв S. O. (Laptiev S.O.) szi@duikt.edu.ua Біляєв Д. А. (Biliaiev D.A.) szi@duikt.edu.ua <p>The method of expert evaluation is an ancient scientific method that allows to obtain an objective assessment based<br>on a certain set of individual expert opinions. The word "expert" (expertus) in Latin means "experienced", which, in turn,<br>comes from the word "experire" - to explore. An expert is a person (specialist) entrusted with expressing an opinion on a<br>controversial or complex case, as humanity has always tried to take into account the opinion of highly qualified specialists<br>in various fields of life in difficult situations [2].<br>The article improves the method of detecting false information based on the method of expert evaluation. The<br>Delphi expert evaluation method was chosen as the basic method for improvement. This is because it has undoubted<br>advantages over methods based on conventional statistical processing of individual survey results. Unlike the existing<br>approach, the improved method allows for the selection of experts rather than adjusting the answers of experts to obtain<br>the required result.<br>The main feature is that the experts are selected by averaging the scores for each expert. Specifically, the selfassessment of the expert and the assessment of the same expert by the working group. This allows you to reduce the error<br>of the expert's real assessment.<br>The ability to set the confidence interval for the assessment of false information will allow obtaining results that<br>satisfy the task of detecting false information with proper accuracy. However, this leads to the task of optimizing the<br>evaluation criteria and the time for solving the task. Therefore, the direction of further research is the task of optimizing<br>the evaluation criteria.<br>The scientific novelty lies in substantiating and assessing the comparative importance of the factors limiting the<br>appointment of each individual expert to detect false information using the method of group expert assessment.<br><strong>Keywords</strong>: false information, expert opinions, quartile, median, confidence interval, limitations.</p> <p><strong>References</strong><br>1. Stephen Keith McGrath, Stephen Jonathan Whitty. Accountability and responsibility defined. International<br>Journal of Managing Projects in Business. Vol. 11 Issue 3. 2018.pp.687-707. DOI: 10.1108/IJMPB-06-2017-0058<br>2. Hnatienko H.M., Snityuk V.E. Expert decision-making technologies. - Kyiv: McLaut, 2008. - 444 p.<br>3. Schefer-Wenzl, S., Strembeck, M. Modeling support for role-based delegation in process-aware information<br>systems. Business and Information Systems Engineering. 6 (4). 2014. pp. 215-237. DOI: 10.1007/s12599-014-0343-3<br>4. Hnatienko G.M. Determination of the weighting coefficients of the criteria of the multicriteria optimization<br>problem in the form of membership functions of a fuzzy set. 5th International Conference on Information technology and<br>interactions (IT&amp;I-2018), Taras Shevchenko National University of Kyiv, November 20-21, 2018, pp. 15-17.<br>5. Luis Ballesteros-Sánchez, Isabel Ortiz-Marcos, Rocío Rodríguez-Rivero. The project managers’ challenges in<br>a projectification environment.(2019) International Journal of Managing Projects in Business, Volume 12 (3): Sep<br>2. 2019 DOI:10.1108/IJMPB-09-2018-0195<br>6. Kolesnikov O., Gogunskii V., Kolesnikov, K., Lukianov D., Olekh, T. Development of the model of interaction<br>among the project, team of project and project environment in project system, Eastern-European Journal of Enterprise<br>Technologies, 5((8)83) 2016. рр. 20-26 DOI: 10.15587/1729-4061.2016.80769<br>7. O.F. Voloshin, G.M. Hnatienko, V.I. Kudin. Sequential analysis of options: Technologies and applications:<br>Monograph.- K.: Stylos, 2013.-304p.<br>8. M. Gladka, Y Hladkyi. Use Taboo Search to assign artists to project work. Proceedings of the VI International<br>Scientific and Technical Internet-Conference "Modern methods, information, software and technical support of<br>management systems of organizational, technical and technological complexes", November 20, 2019. - K: NUFT, 2019 -<br>234 p.<br>9. S. Bushuyev, N. Bushuyeva. Project Management. Fundamentals of professional knowledge and a system for<br>evaluating the competence of project managers (National Competence Baseline, NCB UA Version 3.1). Edition 2nd –<br>K .: "IRIDIUM", 2010 - 208 p<br>10. V. Gogunskii, О. Kolesnikov, K. Kolesnikova, D. Lukianov «Lifelong learning» is a new paradigm of<br>personnel training in enterprises. Eastern-European Journal of Enterprise Technologies. 2016. № 4/2 (82). pp. 4–10.<br>DOI: 10.15587/1729- 4061.2016.74905<br>11. F. Tasevska, T. Damij, N. Damij. Project planning practices based on enterprise resource planning systems in<br>small and medium enterprises – A case study from the Republic of Macedonia. International Journal of Project<br>Management. Vol. 32, Issue 3. 2014.pp. 529–539. DOI: 10.1016/j.ijproman.2013.08.001<br>12. Serhii Yevseiev, Roman Korolyov, Andrii Tkachov, Oleksandr Laptiev, Ivan Opirskyy, Olha Soloviova.<br>Modification of the algorithm (OFM) S-box, which provides increasing crypto resistance in the post-quantum period.<br>International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE) Volume 9. No. 5, SeptemberOktober 2020, pp 8725-8729. DOI: 10.30534/ijatcse/2020/261952020. Q3<br>13. V. Savchenko, O. Laptiev, O. Kolos, R. Lisnevskyi, V. Ivannikova, I. Ablazov. Hidden Transmitter<br>Localization Accuracy Model Based on Multi-Position Range Measurement. 2020 IEEE 2nd International Conference on<br>Advanced Trends in Information Theory (IEEE ATIT 2020) Conference Proceedings Kyiv, Ukraine, November 25-27.<br>2020. pp.246 –251<br>14. Valentyn Sobchuk, Volodymyr Pichkur, Oleg Barabash, Oleksandr Laptiev, Kovalchuk Igor, Amina Zidan.<br>Algorithm of control of functionally stable manufacturing processes of enterprises. 2020 IEEE 2nd International<br>Conference on Advanced Trends in Information Theory (IEEE ATIT 2020) Conference Proceedings Kyiv, Ukraine,<br>November 25-27. pp.206 –211.<br>15. Oleksandr Laptiev, Oleh Stefurak, Igor Polovinkin, Oleg Barabash, Savchenko Vitalii, Olena Zelikovska. The<br>method of improving the signal detection quality by accounting for interference. 2020 IEEE 2nd International Conference<br>on Advanced Trends in Information Theory (IEEE ATIT 2020) Conference Proceedings Kyiv, Ukraine, November 25-<br>27. pp.172 –176.<br>16. O. Laptiev, V.Savchenko, S. Yevseiev, H. Haidur, S. Gakhov, S. Hohoniants. The new method for detecting<br>signals of means of covert obtaining information. 2020 IEEE 2nd International Conference on Advanced Trends in<br>Information Theory (IEEE ATIT 2020) Conference Proceedings Kyiv, Ukraine, November 25-27. pp.176 –181.<br>17. O. Svynchuk, O. Barabash, J. Nikodem, R. Kochan, O. Laptiev. Image compression using fractal<br>functions.Fractal and Fractional, 5(2), 31. 2021. pp.1-14 DOI:10.3390/fractalfract5020031 - 14 Apr 2021.<br>18. Sherstiuk, O., Kolesnikov, O., Lukianov, D. Team Behaviour Model as a Tool for Determining the Project<br>Development Trajectory. 2019 IEEE International Conference on Advanced Trends in Information Theory, ATIT 2019 -<br>Proceedings, 2019, pp. 496-500<br>19. N. Mashukova Basic instructions that achieve the quality of the workforce [Electronic resource]. - Access<br>mode: www.myshared.ru/slide/179699/<br>20. A Guide to the project management body of knowledge (PMBoK guide). Sixth Edition – USA: PMI Inc., 537<br>p. 2017.<br>21. N. Lukova-Chuiko, V. Saiko, V. Nakonechnyi, T. Narytnyk, M. Brailovskyi. Terahertz Range Interconnecting<br>Line For LEO-System. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics,<br>Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine. 2020. pp. 425– 429.<br>22. S. Toliupa, N. Lukova-Chuiko, O. Oksiuk. Choice of Reasonable Variant of Signal and Code Constructions<br>for Multirays Radio Channels. Second International Scientific-Practical Conference Problems of Infocommunications.<br>Science and Technology. IEEE PIC S&amp;T 2015. pp. 269 – 271.</p> 2025-06-28T12:12:45+00:00 ##submission.copyrightStatement## https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3232 CYBERSECURITY PROBLEMS IN ORGANIZATIONS WITH REMOTE WORK 2025-06-28T17:46:35+00:00 Вербиненко В. О. (Verbynenko V.O.) szi@duikt.edu.ua Зибін С. В. (Zybin S.V.) szi@duikt.edu.ua <p>The rapid spread of remote work in the world creates new challenges for ensuring effective and secure digital interaction<br>in organizations. The purpose of this study is a comprehensive analysis of modern approaches, tools and organizational and<br>legal means used to organize secure digital interaction in remote work. To achieve this goal, the method of analyzing literary<br>sources was used, which allowed to systematize information on technological solutions, management practices and regulatory<br>requirements related to remote work.<br>The main key aspects were analyzed: digital platforms and services for communication and collaboration, user device<br>management and the Bring Your Own Device (BYOD) concept, as well as legal regulation of the field of cybersecurity and<br>privacy. The study results found that the use of unified platforms for managing corporate services reduces the fragmentation of<br>the digital environment and the risks of data leakage; providing employees with secure corporate devices or implementing clear<br>BYOD policies minimizes the main cyber threats; Compliance with international standards and national legislation in the field<br>of information protection ensures the legal compliance of the activities of a distributed team. A comprehensive approach that&nbsp;combines modern technological tools, effective management and compliance with legal norms allows you to increase the level<br>of information security and the efficiency of remote work, minimizing potential risks.<br><strong>Keywords</strong>: cybersecurity, cloud security, remote work, BYOD, legal regulation.</p> <p><strong>References</strong><br>1. Radha P., Sayyed N., Fathima Y. The new normal: navigating cyber security challenges in remote work policies.<br>NPRC journal of multidisciplinary research. 2024. Vol. 1, no. 8. P. 106–118. URL: https://doi.org/10.3126/<br>nprcjmr.v1i8.73042 (date of access: 30.04.2025).<br>2. Office I. L., Messenger J. C. Telework in the 21st century: an evolutionary perspective. International Labour<br>Organisation (ILO), 2019.<br>3. Sabin J. The future of security in a remote-work environment. Network security. 2021. Vol. 2021, no. 10. P.<br>15–17. URL: https://doi.org/10.1016/s1353-4858(21)00118-5 (date of access: 30.04.2025).<br>4. Rhodes C., Bettany A. Automating windows deployment with zero touch. Windows installation and update<br>troubleshooting. Berkeley, CA, 2016. P. 119–137. URL: https://doi.org/10.1007/978-1-4842-1827-3_5 (date of access:<br>30.04.2025).<br>5. AlShalaan M. R., Fati S. M. Enhancing organizational data security on employee-connected devices using<br>BYOD policy. Information. 2023. Vol. 14, no. 5. P. 275. URL: https://doi.org/10.3390/info14050275 (date of access:<br>30.04.2025).<br>6. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of<br>natural persons with regard to the processing of personal data and on the free movement of such data, and repealing<br>Directive 95/46/EC (GDPR). URL: https://eur-lex.europa.eu/eli/reg/2016/679/oj.<br>7. Jarrahi M. H., Reynolds R., Eshraghi A. Personal knowledge management and enactment of personal knowledge<br>infrastructures as shadow IT. Information and learning sciences. 2020. Ahead-of-print, ahead-of-print. URL:<br>https://doi.org/10.1108/ils-11-2019-0120 (date of access: 08.05.2025).<br>8. Bonderud D. Cost of a data breach 2024: Financial industry | IBM. IBM - United States. URL:<br>https://www.ibm.com/think/insights/cost-of-a-data-breach-2024-financial-industry (date of access: 07.05.2025).<br>9. Public Company Accounting Reform and Investor Protection Act of 2002, 15 U.S.C. § 7201 et seq. (2002).<br>https://www.govinfo.gov/content/pkg/PLAW-107publ204/pdf/PLAW-107publ204.pdf.<br>10. Nwankpa J. K., Datta P. M. Remote vigilance: the roles of cyber awareness and cybersecurity policies among<br>remote workers. Computers &amp; security. 2023. P. 103266. URL: https://doi.org/10.1016/j.cose.2023.103266 (date of<br>access: 30.04.2025).<br>11. Das S., Dingman A., Camp L. Why Johnny doesn’t use two factor: A two-phase usability study of the FIDO<br>U2F security key. 2018. P. 160–179. URL: https://doi.org/10.1007/978-3-662-58387-6_9.<br>12. Repetto M. Adaptive monitoring, detection, and response for agile digital service chains. Computers &amp;<br>Security. 2023. Vol. 132. P. 103343. URL: https://doi.org/10.1016/j.cose.2023.103343 (date of access: 08.05.2025).<br>13. Haag S., Eckhardt A., Schwarz A. The Acceptance of Justifications among Shadow IT Users and Nonusers –<br>An Empirical Analysis. Information &amp; Management. 2019. Vol. 56, no. 5. P. 731–741. URL: https://doi.org/<br>10.1016/j.im.2018.11.006 (date of access: 08.05.2025).<br>14. Waelchli S., Walter Y. Reducing the risk of social engineering attacks using SOAR measures in a real world<br>environment: A case study. Computers &amp; Security. 2024. P. 104137. URL: https://doi.org/10.1016/j.cose.2024.104137<br>(date of access: 09.05.2025).<br>15. Ratchford M., Wang P., Sbeit R. O. BYOD Security Risks and Mitigations. Advances in Intelligent Systems<br>and Computing. Cham, 2017. P. 193–197. URL: https://doi.org/10.1007/978-3-319-54978-1_27 (date of access:<br>09.05.2025).<br>16. Lim Y. Z., Rahman H. B. A., Sikdar B. False sense of security on protected wi-fi networks. Cryptography and<br>security. URL: https://arxiv.org/abs/2501.13363.<br>17. Al Jutail M., Al-Akhras M., Albesher A. Associated risks in mobile applications permissions. Journal of<br>Information Security. 2019. Vol. 10, no. 02. P. 69–90. URL: https://doi.org/10.4236/jis.2019.102004 (date of access:<br>09.05.2025).<br>18. Outdated software | OWASP foundation. OWASP Foundation, the Open Source Foundation for Application<br>Security | OWASP Foundation. URL: https://owasp.org/www-project-top-10-infrastructure-security-risks/docs/2024/<br>ISR01_2024-Outdated_Software (date of access: 09.05.2025).<br>19. Adascalitei D., Riso S. Effects of employee monitoring on remote work. An empirical study from Germany<br>and Spain using AMPWork survey data (2021-2022). Sinappsi. 2024. Vol. XIV. P. 93–112.<br>20. Bring your own device (BYOD): organizational control and justice perspectives / H. Lam et al. Employee<br>Responsibilities and Rights Journal. 2024. URL: https://doi.org/10.1007/s10672-024-09498-1 (date of access:<br>09.05.2025).<br>21. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection<br>of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing<br>Directive 95/46/EC (GDPR). URL: https://eur-lex.europa.eu/eli/reg/2016/679/oj.<br>22. J. G. Balancing employee privacy and cyber security in remote work: ethical and legal challenges. URL:<br>https://www.researchgate.net/publication/389711296_BALANCING_EMPLOYEE_PRIVACY_AND_CYBER_SECU<br>RITY_IN_REMOTE_WORK_ETHICAL_AND_LEGAL_CHALLENGES.<br>23. Swire P., Kennedy-Mayo D. The risks to cybersecurity from data localization – organizational effects. Arizona<br>law journal of emerging technologies. 2025. Vol. 8, no. 1. URL: https://doi.org/10.2458/azlawjet.7523 (date of access:<br>09.05.2025).<br>24. Golubock D. Remote workers, ever-present risk: employer liability for data breaches in the era of hybrid<br>workplaces. Journal of law, technology, &amp; the internet. 2024. Vol. 15, no. 2. URL: https://scholarlycommons.<br>law.case.edu/jolti/vol15/iss2/4 (date of access: 09.05.2025).<br>25. Nwosu O. Monitoring productivity vis-a-vis employee privacy: legal and ethical considerations: thesis. 2022.<br>32 p. URL: https://doi.org/10.2139/ssrn.4095627 (date of access: 09.05.2025).<br>26. Simutina Y. Remote work in Ukraine: problems and prospects of improving its legal regulation. Yearly journal<br>of scientific articles “Pravova derzhava”. 2023. No. 34. P. 431–444. URL: https://doi.org/10.33663/1563-3349-2023-34-<br>431-444 (date of access: 09.05.2025).</p> 2025-06-28T12:20:36+00:00 ##submission.copyrightStatement## https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3233 ASSESSMENT OF THE STATE OF CYBERSECURITY OF CRITICAL INFRASTRUCTURE USING AI 2025-06-28T17:46:48+00:00 Гайдур Г. І. (Gaidur G.I.) szi@duikt.edu.ua Гахов С. О. (Gakhov S.O.) szi@duikt.edu.ua Скибун О. Ж. (Skybun O.Zh.) szi@duikt.edu.ua <p>This study examines the use of artificial intelligence as a tool for assessing the state of cybersecurity of critical<br>infrastructure. This approach is relevant in view of the growing threat of the use of artificial intelligence technologies by<br>cybercriminals. Thanks to the power of artificial intelligence, it has become possible to analyze large data sets to identify patterns<br>and anomalies that indicate potential attacks, including previously unknown variants. This allows for proactive protection, which<br>includes timely warning of threats and data integrity checks, which contribute to their confident recovery after attacks.<br>Artificial intelligence also contributes to the localization of threats by analyzing the scale of cyberattacks, determining<br>the radius of their spread, which allows for effective isolation of affected systems and minimizing their impact on the<br>infrastructure. In addition, artificial intelligence algorithms optimize the recovery process, reducing system downtime, reducing<br>losses and ensuring high adaptability to new challenges in the cyber environment.<br>Given the significant capital intensity of the measures, the approach to integrating artificial intelligence requires careful<br>selection of the platform, concept and tools. The development and implementation of solutions in the field of cyber protection<br>is mostly provided by international companies, which affects the possibilities of using such technologies by owners and users<br>of critical infrastructure. Thus, the implementation of artificial intelligence to assess the state of cybersecurity of critical<br>infrastructure is not only a promising direction of cybersecurity, but also a prerequisite/requirement for creating a resilient<br>critical infrastructure that is able to effectively adapt to new cyber threats/cyber-attacks/cyber incidents.<br>In addition, recommendations are proposed for choosing an AI model/platform/tools for large companies - owners/users<br>of AI in various sectors of the economy, since the issue of choosing/using AI models/platforms/tools requires including in the<br>selection criteria such factors as the impact on the state of national security and geopolitical strategic relations between countries.<br><strong>Keywords</strong>: vulnerabilities, state security, defense systems, cybersecurity, cyber defense, sustainability and resilience,<br>critical infrastructure, information security management, model and tools, analysis, security assessment, artificial intelligence.</p> <p><strong>References</strong><br>1. Зелена книга з питань захисту критичної інфраструктури в Україні : зб. мат-лів міжнар. експерт. нарад<br>/ упоряд. Д.С. Бірюков, С.І. Кондратов; за заг. ред. О.М. Суходолі. Київ. : НІСД, 2015. 176 с. https://web.archive.<br>org/web/20170215015327/http://www.niss.gov.ua/public/File/2016_book/Syxodolya_ost.pdf.<br>2. Мануілов Я.С. Питання розробки індикаторів оцінки стану кібербезпеки. Інформація і право.<br>№ 4(51) (2024). С.144-152. http://il.ippi.org.ua/article/view/318004.<br>3. Європейська програма захисту критичної інфраструктури. https://eur-lex.europa.eu/legal-content/EN/<br>TXT/?uri=LEGISSUM:l33260&amp;frontOfficeSuffix=%2F<br>4. Протокол кризових комунікацій під час реагування на кібератаки та кіберінциденти : наказ МОЗ від<br>06.12.2023 № 20276. https://moz.gov.ua/uploads/10/51989-dn_2076_06122023_dod.pdf.<br>5. Положення про організаційно-технічну модель кіберзахисту : постанова Кабінету міністрів України від<br>29.12.2021 № 1426 (зі змінами). https://zakon.rada.gov.ua/laws/show/1426-2021-%D0%BF#n9<br>6. Застосування ШІ у кібербезпеці: роль та переваги. https://wezom.com.ua/ua/blog/zastosuvannya-shi-ukiberbezpetsi-rol-ta-perevagi?form=MG0AV3&amp;form=MG0AV3<br>7. Скіцько О., Складанний П., Ширшов Р., Гуменюк М., Ворохоб М. Загрози та ризики використання<br>штучного інтелекту. Кібербезпека: наука, освіта, техніка. № 2 (22), 2023. С.6-14.<br>8. Штучний інтелект в енергетиці : аналіт. доповідь / Суходоля О.М. Київ. : НІСД, 2022. 49 с.<br>https://doi.org/10.53679/NISS-analytrep.2022.09<br>9. Готовність кібербезпеки: індекс Cisco у 2024 році. https://www.megatrade.ua/news/reviews/gotovnistkiberbezpeki-indeks-cisco-u-2024-rotsi/<br>10. Ткаченко І.В., Козачок В.А., Гахов С.О., Дмітрієв В.Є. Оцінка стану кібербезпеки критичної<br>інформаційної інфраструктури в ході виявлення та відслідковування кризових індикаторів. Сучасний захист<br>інформації №1(41), 2020. С.54-57. https://journals.dut.edu.ua/index.php/dataprotect/article/view/2408/2309.<br>11. Гончар С.Ф. Оцінювання ризиків кібербезпеки інформаційних систем об’єктів критичної<br>інфраструктури: монографія / С.Ф. Гончар. Київ.: Альфа Реклама, 2019. 176 с. https://www.researchgate.<br>net/publication/337440032_Ocinuvanna_rizikiv_kiberbezpeki_informacijnih_sistem_ob’ektiv_kriticnoi_infrastrukturi.<br>12. MCGANN Jim. Cyber Resilience for Critical Infrastructure Using AI. https://www.cpomagazine.com/cybersecurity/using-ai-to-build-cyber-resilience-for-critical-infrastructure/.<br>13. Fuller Evan How AI &amp; Machine Learning Powers Next-Gen Data Leak Prevention (DLP).<br>https://www.nightfall.ai/blog/how-ai-and-machine-learning-powers-next-gen-data-leak-prevention-dlp.<br>14. Офіційна сторінка ISACA. https: // www.isaca.org/search#q=State%20of%20Cybersecurity%202021%20-<br>Report&amp;sort=relevancy</p> 2025-06-28T14:30:05+00:00 ##submission.copyrightStatement## https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3234 ANALYSIS OF THE RESISTANCE OF STEGANOALGORITHMS TO GEOMETRIC ATTACKS AND COMPRESSION 2025-06-28T17:46:56+00:00 Гасілін Д. Л. (Gasilin D.L.) szi@duikt.edu.ua Журавель І. М. (Zhuravel I.M.) szi@duikt.edu.ua <p>The analysis of the stability of steganographic methods of hiding in the spatial domain to attacks common in open and<br>closed channels, such as geometric transformations and compression, was carried out. The impact of these attacks on the stability<br>of the steganochannel operation was assessed and methods for increasing the stability to such attacks were proposed. Various<br>types of attacks based on affine transformations and their impact on the quality of information hiding were investigated.<br>Attention was focused on preserving the integrity of the message during such attacks.<br>The study evaluates the possibility of using different types of messages and the impact of coding with repetition on the<br>stability of the steganosystem. A method for assessing the stability of attacks based on the bit error method was developed and<br>simulated, which was modified for analysis at the byte level in order to apply the results to different types of containers and<br>support streaming data.<br>The importance of the absence of the influence of the order of pixel placement when embedding a message is noted,<br>which allows minimizing the impact of geometric transformations on the embedded message. The resistance of the color space<br>modification algorithm to attacks is higher than that of the LSB method by 14-98%. LSB has a 10% higher resistance only to a<br>minor scaling attack. However, this difference does not allow us to call it practically suitable for use.<br>The influence of image resolution on the amount of embedded information in each of the methods is analyzed. Promising<br>directions for further research are analyzed by introducing block coding and using effective error correction methods and using<br>alternative container properties for embedding.<br><strong>Keywords</strong>: steganography, geometric attacks, affine transformations, color space.</p> <p><strong>References</strong><br>1. Kalenyuk, P., Rybytska, O., &amp; Ivasyk, G. (2019). Linear algebra and analytic geometry: Basic course: Tutorial<br>[Лінійна алгебра та аналітична геометрія. Базовий курс] (J. Wojtowicz, Trans.). Lviv Polytechnic Publishing House.<br>2. Walia, Ekta &amp; Jain, Payal &amp; Navdeep. (2010). An analysis of LSB &amp; DCT based steganography. Global<br>Journal of Computer Science and Technology. 10.<br>3. Zhang, Y., Luo, X., Wang, J., Yang, C., &amp; Liu, F. (2018). A robust image steganography method resistant to<br>scaling and detection. Journal of Internet Technology, 19(2), 607–618. https://doi.org/10.3966/1607926420180319-<br>02029.<br>4. Apau, R., Asante, M., Twum, F., Ben Hayfron-Acquah, J., &amp; Peasah, K. O. (2024). Image steganography<br>techniques for resisting statistical steganalysis attacks: A systematic literature review. PloS one, 19(9), e0308807.<br>https://doi.org/10.1371/journal.pone.0308807.<br>5. Alrusaini, O. A. (2025). Deep learning for steganalysis: Evaluating model robustness against image<br>transformations. Frontiers in Artificial Intelligence, 8, 1532895. https://doi.org/10.3389/frai.2025.1532895.<br>6. AbdelRaouf, A. (2021). A new data hiding approach for image steganography based on visual color sensitivity.<br>Multimedia Tools and Applications, 80. https://doi.org/10.1007/s11042-020-10224-w.<br>7. Margalikas, E., &amp; Ramanauskaitė, S. (2019). Image steganography based on color palette transformation in<br>color space. EURASIP Journal on Image and Video Processing, 2019(1). https://doi.org/10.1186/s13640-019-0484-x.<br>8. Гасілін Д., Журавель І. (2024) Стеганографічний метод приховування інформації через модифікацію<br>колірного простору з урахуванням властивостей зорового сприйняття. Інформаційні технології і автоматизація –<br>2024 : матеріали XVII Міжнародної науково-практичної конференції, Одеса, 31 жовтня – 1 листопада 2024 р. –<br>2024. – C. 175–178.<br>9. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson,<br>P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,<br>Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J.,<br>Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt,<br>P., &amp; SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature<br>Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2.<br>10. Harris, C. R., Millman, K. J., van der Walt, S. J., et al. (2020). Array programming with NumPy. Nature, 585,<br>357–362. https://doi.org/10.1038/s41586-020-2649-2.<br>11. The Pandas Development Team. (2024). pandas-dev/pandas: Pandas (v2.2.3). Zenodo.<br>https://doi.org/10.5281/zenodo.13819579.<br>12. Bradski, G. (2000). The OpenCV library. Dr. Dobb’s Journal of Software Tools.<br>13. Clark, A. (2015). Pillow (PIL fork) documentation. Read the Docs. Retrieved from<br>https://pillow.readthedocs.io/.<br>14. Malluri, S. (2021). Image Steganography. GitHub. https://github.com/LudicrousWhale/ImageSteganography.<br>15. Shah, M., Yu, X., Di, S., Becchi, M., &amp; Cappello, F. (2024). A portable, fast, DCT-based compressor for AI<br>accelerators. In Proceedings of the 33rd International Symposium on High-Performance Parallel and Distributed<br>Computing (pp. 109–121). Association for Computing Machinery. https://doi.org/10.1145/3625549.3658662.<br>16. Kunhoth, Jayakanth &amp; Subramanian, Nandhini &amp; Al-ma'adeed, Somaya &amp; Bouridane, Ahmed. (2023). Video<br>steganography: recent advances and challenges. Multimedia Tools and Applications. 82. 1-43.<br>https://doi.org/10.1007/s11042-023-14844-w.<br>17. Brakensiek, J., Gopi, S., &amp; Makam, V. (2023). Generic Reed-Solomon codes achieve list-decoding capacity.<br>In Proceedings of the 55th Annual ACM Symposium on Theory of Computing (pp. 1488–1501). Association for<br>Computing Machinery. https://doi.org/10.1145/3564246.3585128.<br>18. McKiernan, S. (2023). Foundational Techniques for Wireless Communications: Channel Coding, Modulation,<br>and Equalization. ArXiv. https://arxiv.org/abs/2310.13209.<br>19. Yergeau, F. (2003, November). UTF-8, a transformation format of ISO 10646. https://www.rfceditor.org/info/rfc3629.</p> 2025-06-28T15:03:02+00:00 ##submission.copyrightStatement## https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3235 ANALYSIS OF AUTHENTICATION MODELS AND ALGORITHMS BASED ON BIOMETRIC DATA 2025-06-28T17:47:07+00:00 Журавель Ю. І. (Zhuravel Y.I.) szi@duikt.edu.ua Лісовський Б. В. (Lisovsky B.V.) szi@duikt.edu.ua <p>User authentication is one of the key aspects of information security, which provides access control to resources and<br>protection of confidential data. Traditional authentication methods, such as passwords and PIN codes, have a number of<br>shortcomings, in particular, vulnerability to attacks such as brute force, phishing, and interception. In this regard, there is<br>growing interest in biometric authentication methods that provide a higher level of security and ease of use. The article considers<br>modern models and algorithms of biometric authentication, their advantages and disadvantages. The features of the use of<br>unimodal and multimodal systems are analyzed. Special attention is paid to promising methods for increasing the accuracy of<br>authentication and the security of biometric data storage. An analysis of modern research in this area is presented. The main<br>algorithms used in biometric authentication systems are also considered, including image processing methods, neural networks,<br>machine learning, and cryptographic technologies. The possibilities of using multi-factor authentication, which combines<br>biometric parameters with other methods of identity verification, which significantly increases the level of security, are<br>analyzed. The prospects for the development of biometric authentication systems are considered, in particular, the introduction&nbsp;of new technologies, such as artificial intelligence, blockchain and quantum cryptography. An analysis of possible risks<br>associated with biometric authentication is carried out. It is concluded that the use of biometric methods allows to significantly<br>increase the efficiency of authentication, reduce the risks of data compromise and ensure convenience for users, however, their<br>implementation requires taking into account issues of confidentiality, reliability and legal regulation. An authentication system<br>based on artificial intelligence, blockchain, quantum cryptography is proposed and its effectiveness is analyzed.<br><strong>Keywords</strong>: biometric authentication, unimodal systems, multimodal systems, artificial intelligence, cryptography,<br>steganography.</p> <p><strong>References</strong><br>1. Ганін, І. В., &amp; Ковальчук, О. П. (2021). Сучасні методи біометричної ідентифікації. Вісник<br>Національного технічного університету України "КПІ". Серія: Інформаційна безпека, (3), 26-32. Отримано з<br>https://ela.kpi.ua/bitstream/123456789/9839/1/26.pdf.<br>2. Коваленко, Р. С., &amp; Ігнатенко, Т. В. (2022). Вибір переважного методу біометричної автентифікації.<br>Інформаційна безпека та кіберзахист, 5(12), 44–57. Отримано з https://isg-journal.com/isjea/article/download<br>/444/246/457.<br>3. Руда, Х., Сабодашко, Д., Микитин, Г., Швед, М., Бордуляк, С., &amp; Коршун, Н. (2024). Порівняння<br>методів цифрової обробки сигналів та моделей глибинного навчання у голосовій аутентифікації. Кібербезпека:<br>освіта, наука, техніка, 1(25), 140–160. https://doi.org/10.28925/2663-4023.2024.25.140160.<br>4. Kaur, P., Sharma, M., &amp; Sharma, N. (2020). A robust multimodal biometric authentication system using deep<br>learning. Expert Systems with Applications, 157. https://doi.org/10.1016/j.eswa.2020.113486.<br>5. Liu, X., Yin, F., Wang, L., &amp; Xu, W. (2023). Deep Learning in Biometrics: A Review. Pattern Recognition<br>Letters, 45(3), 128–140. https://doi.org/10.1016/j.patrec.2022.10.015.<br>6. Goodfellow, I., Bengio, Y., &amp; Courville, A. (2016). Deep Learning. MIT Press.<br>7. He, K., Zhang, X., Ren, S., &amp; Sun, J. (2016). Deep Residual Learning for Image Recognition. Proceedings of<br>the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. https://doi.org/10.1109<br>/CVPR.2016.90.<br>8. Smith, P., &amp; Jones, R. (2021). Spoofing Attacks in Biometric Systems: Detection and Prevention. Journal of<br>Cybersecurity, 8(3), 210–225. https://doi.org/10.1093/cybsec/tyab012.<br>9. Скорик, Ю., &amp; Безрук, В. (2023). Вибір переважного методу біометричної автентифікації. International<br>Science Journal of Engineering &amp; Agriculture, 2(4), 28–34.<br>10. Іосіфов, Є., &amp; Соколов, В. (2024). Порівняльний аналіз методів, технологій, сервісів та платформ для<br>розпізнавання голосової інформації в системах забезпечення інформаційної безпеки. Кібербезпека: освіта, наука,<br>техніка, 1(25), 468-486.<br>11. Ledig, C., et al. (2017). Photo-realistic single image super-resolution using a generative adversarial network.<br>Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), 4681-4690.<br>https://doi.org/10.1109/CVPR.2017.19.</p> 2025-06-28T16:32:15+00:00 ##submission.copyrightStatement## https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3236 INCREASING THE EFFICIENCY OF STEGANOGRAPHY THROUGH THE USE OF IMAGE ENHANCEMENT METHODS AND ARTIFICIAL INTELLIGENCE MODELS 2025-06-28T17:47:15+00:00 Журавель Ю. І. (Zhuravel Y.I.) szi@duikt.edu.ua Мичуда Л. З. (Mychuda L.Z.) szi@duikt.edu.ua <p>The article investigates the problem of increasing the efficiency of steganographic methods through the use of modern<br>approaches to image enhancement. Particular attention is paid to preprocessing methods, as well as the use of deep neural<br>networks, such as ESRGAN, U-Net, and SteganoGAN. The results of experiments using adaptive contrast enhancement and<br>smoothing are presented, which allows increasing the hidden capacity of the container and reducing the probability of detecting<br>hidden data. The paper investigates the influence of preprocessing methods on the results of steganographic message hiding. It<br>was experimentally established that preprocessing of images significantly affects the efficiency of LSB steganography. The best<br>stealth (high PSNR and SSIM) and resistance to JPEG compression was demonstrated by the approach with adaptive texture<br>segmentation. Conversion to YCbCr also allows increasing stability without losing bandwidth. At the same time, histogram<br>equalization worsens stability due to increased contrast. Thus, adaptive preprocessing methods are advisable to use to improve<br>the security and quality of information hiding. A comparison of artificial intelligence models for steganography tasks was<br>conducted. In the course of the work, artificial intelligence models used in steganography tasks were analyzed. It was found that<br>the effectiveness of a specific architecture (for example, U-Net or SteganoGAN) significantly depends on the tasks, the type of<br>input data, the requirements for channel bandwidth, and the available computing resources. It was concluded that the adaptive<br>use of deep learning and image preprocessing methods allows to increase both the stability of hidden messages and their<br>invisibility, which is critically important for modern digital steganography.<br><strong>Keywords</strong>: steganography, image enhancement, ESRGAN, deep learning, information protection, neural networks.</p> <p><strong>References</strong><br>1. Zhou J., Liu J., et al. "An Image Preprocessing Framework for Steganography". Journal of Visual<br>Communication and Image Representation, 2020.<br>2. Wang H., Chen Y. "Color Space Transformations for Enhanced Steganography". IEEE Transactions on<br>Information Forensics, 2021.<br>3. Wang X., Yu K., Wu S., et al. "ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks".<br>ECCV Workshops, 2018.<br>4. Ronneberger O., Fischer P., Brox T. "U-Net: Convolutional Networks for Biomedical Image Segmentation".<br>MICCAI, 2015.<br>5. Zhu J., Kaplan R., Johnson J., Fei-Fei L. "HiDDeN: Hiding Data With Deep Networks". NeurIPS, 2018.<br>6. Xiao Y., Zhang L., Qian Z. "Robust Steganography via Contrast Limited Adaptive Histogram Equalization".<br>Signal Processing: Image Communication, 2019.<br>7. Baluja S. "Hiding Images in Plain Sight: Deep Steganography". NeurIPS, 2017.<br>8. Liu Y., Huang Y., et al. "A Survey on Deep Learning Based Steganography and Steganalysis". ACM Computing<br>Surveys, 2021.<br>9. Tang W., Li Y., et al. "An Overview of Deep-Learning-Based Image Steganography". IEEE Access, 2022.<br>10. Kim J., Park H. "Lightweight Deep Learning Models for Real-Time Steganography". Pattern Recognition<br>Letters, 2022.</p> 2025-06-28T16:37:00+00:00 ##submission.copyrightStatement## https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3237 INCREASING THE EFFICIENCY OF STEGANOGRAPHY THROUGH THE USE OF IMAGE ENHANCEMENT METHODS AND ARTIFICIAL INTELLIGENCE MODELS 2025-06-28T17:47:21+00:00 Корченко О. Г. (Korchenko O.G.) szi@duikt.edu.ua Козловський В. В. (Kozlovsky V.V.) szi@duikt.edu.ua Міщенко А. В. (Mishchenko A.V.) szi@duikt.edu.ua Терейковський О. І. (Tereykovsky O.I.) szi@duikt.edu.ua <p>The article investigates the problem of increasing the efficiency of steganographic methods through the use of modern<br>approaches to image enhancement. Particular attention is paid to preprocessing methods, as well as the use of deep neural<br>networks, such as ESRGAN, U-Net, and SteganoGAN. The results of experiments using adaptive contrast enhancement and<br>smoothing are presented, which allows increasing the hidden capacity of the container and reducing the probability of detecting<br>hidden data. The paper investigates the influence of preprocessing methods on the results of steganographic message hiding. It<br>was experimentally established that preprocessing of images significantly affects the efficiency of LSB steganography. The best<br>stealth (high PSNR and SSIM) and resistance to JPEG compression was demonstrated by the approach with adaptive texture<br>segmentation. Conversion to YCbCr also allows increasing stability without losing bandwidth. At the same time, histogram<br>equalization worsens stability due to increased contrast. Thus, adaptive preprocessing methods are advisable to use to improve<br>the security and quality of information hiding. A comparison of artificial intelligence models for steganography tasks was<br>conducted. In the course of the work, artificial intelligence models used in steganography tasks were analyzed. It was found that<br>the effectiveness of a specific architecture (for example, U-Net or SteganoGAN) significantly depends on the tasks, the type of<br>input data, the requirements for channel bandwidth, and the available computing resources. It was concluded that the adaptive<br>use of deep learning and image preprocessing methods allows to increase both the stability of hidden messages and their<br>invisibility, which is critically important for modern digital steganography.<br><strong>Keywords</strong>: steganography, image enhancement, ESRGAN, deep learning, information protection, neural networks.</p> <p><strong>References</strong><br>1. ДСТУ ISO/IEC 19989-1:2023. Інформаційна безпека. Критерії та методологія оцінювання безпеки<br>біометричних систем. Частина 1. Структура (ISO/IEC 19989-1:2020, IDT). [Чинний від 2023-08-22]. Київ : ДП<br>«УкрНДНЦ», 2023. 32 с.<br>2. ДСТУ ISO/IEC 19989-2:2023. Інформаційна безпека. Критерії та методологія оцінювання безпеки<br>біометричних систем. Частина 2. Структура (ISO/IEC 19989-2:2020, IDT). [Чинний від 2023-08-22]. Київ : ДП<br>«УкрНДНЦ», 2023. 36 с.<br>3. ДСТУ ISO/IEC 24745:2023. Інформаційні технології. Кібербезпека та захист конфіденційності. Захист<br>біометричної інформації (ISO/IEC 24745:2022, IDT). [На заміну ДСТУ ISO/IEC 24745:2015; чинний від 2023-08-<br>22]. – Київ: ДП «УкрНДНЦ», 2023. – 28 с.<br>4. Про затвердження Методичних рекомендацій щодо забезпечення кіберзахисту автоматизованих систем<br>управління технологічними процесами : Наказ Адміністрація Держспецзв’язку України від 29.05.2023. № 463. –<br>Київ, 2023. – 38 с.<br>5. Про затвердження Положення про національну систему біометричної верифікації та ідентифікації<br>громадян України, іноземців та осіб без громадянства: Постанова Кабінету Міністрів України від 27.12.2017 р.<br>№ 1073. – Київ, 2017.<br>6. Lakhno V., Kozlovskyi V., Klobukov V., Kryvoruchko O., Chubaievskyi V., Tyshchenko D. Software Package<br>for Information Leakage Threats Relevance Assessment. In: Silhavy, R. (eds) Cybernetics Perspectives in Systems. CSOC<br>2022. Lecture Notes in Networks and Systems, vol 503. Springer, Cham. P. 290-301. DOI: 10.1007/978-3-031-09073-<br>8_25.<br>7. Шульга В., Міщенко А., Моркляник Б., Лазаренко С., Ліщиновська Н. План управління безпекою<br>інформаційних активів об’єктів авіатранспортного комплексу України. Захист інформації. Т. 25, № 4, 2023.<br>С. 213-221. DOI: 10.18372/2410-7840.25.18227.<br>8. Muthukumaran B., Harshavarthanan L., Dhyaneshwar S., Sharief M.Z. Face and Iris based Human<br>Authentication using Deep Learning. 2023. 4th International Conference on Electronics and Sustainable Communication<br>Systems (ICESC), Coimbatore, India, 2023, pp. 841-846. DOI: 10.1109/ICESC57686.2023.10193230.<br>9. Wang Y., Tan T., Jain A.K. Combining Face and Iris Biometrics for Identity Verification. In: Kittler J., Nixon<br>M.S. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2003, Lecture Notes in Computer Science.<br>Vol. 2688. Springer, Berlin, Heidelberg. DOI: 10.1007/3-540-44887-X_93.<br>10. Корченко О.Г., Терейковський О.І. Аналіз та оцінювання засобів біометричної аутентифікації за<br>зображенням обличчя та райдужної оболонки ока персоналу об’єктів критичної інфраструктури. Кібербезпека:<br>освіта, наука, техніка, №1(21), 2023. С. 136-148. DOI: 10.28925/2663-4023.2023.21.136148.<br>11. Ahmad Sabri N.I., Setumin S. One-Shot Learning for Facial Sketch Recognition using the Siamese<br>Convolutional Neural Network. 2021 IEEE 11th IEEE Symposium on Computer Applications &amp; Industrial Electronics<br>(ISCAIE), Penang, Malaysia, 2021, pp. 307-312. DOI: 10.1109/ISCAIE51753.2021.9431773.<br>12. Hamdani N., Bousahba N., Bousbai A., Braikia A. Face Detection and Recognition Using Siamese Neural<br>Network. International Journal of Computing and Digital System (Jāmiʻat al-Baḥrayn. Markaz al-Nashr al-ʻIlmī), 2023,<br>Vol. 14, No. 1, pp. 889-897. DOI: 10.12785/ijcds/140169.<br>13. Pranav K.B., Manikandan J. Design and Evaluation of a Real-Time Face Recognition System using<br>Convolutional Neural Networks. Procedia Computer Science. Vol. 171, 2020, pp. 1651-1659. DOI:<br>10.1016/j.procs.2020.04.177.<br>14. Hangaragi S., Singh T., Neelima N. Face Detection and Recognition Using Face Mesh and Deep Neural<br>Network. Procedia Computer Science, Volume 218, 2023, pp. 741-749. DOI: 10.1016/j.procs.2023.01.054.<br>15. Yergesh A.K. Development of an advanced biometric authentication system using iris recognition based on a<br>convolutional neural network. Herald of Science. Vol. 2, no. 5 (74), 2024, pp. 615-625. DOI: 10.24412/2712-8849-2024-<br>574-615-625.<br>16. Edmunds T., Caplier A. Motion-based countermeasure against photo and video spoofing attacks in face<br>recognition. Journal of Visual Communication and Image Representation, Volume 50, 2018, P. 314-332. DOI:<br>10.1016/j.jvcir.2017.12.004.<br>17. Kumar C.R., Saranya N., Priyadharshini M., Gilchrist E.D., Rahman M.K. Face recognition using CNN and<br>siamese network. Measurement: Sensors, Vol. 27, 2023. DOI: 10.1016/j.measen.2023.100800.<br>18. Li L., Correia P.L., Hadid A. Face recognition under spoofing attacks: countermeasures and research directions.<br>IET Biometrics, 2018, Vol. 7, pp. 3-14. DOI: 10.1049/iet-bmt.2017.0089.<br>19. Корченко О., Терейковський О. Модель процедури розпізнавання особи за зображенням обличчя та<br>райдужною оболонкою ока при біометричній автентифікації персоналу об’єктів критичної інфраструктури із<br>застосуванням нейромережевих засобів. Захист інформації. Т. 26, № 1, 2024. С. 157-170. DOI: 10.18372/2410-<br>7840.26.18839.<br>20. Korchenko O., Tereikovskyi I., Ziubina R., Tereikovska L., Korystin O., Tereikovskyi O., Karpinskyi V.<br>Modular Neural Network Model for Biometric Authentication of Personnel in Critical Infrastructure Facilities Based on<br>Facial Images. Applied Sciences. 2025, 15, 2553. DOI: 10.3390/app15052553.<br>21. Корченко О., Терейковський О. Модульна нейромережева модель біометричної автентифікації<br>персоналу об’єктів критичної інфраструктури за зображенням обличчя та райдужною оболонкою ока. Безпека<br>інформації. 2024. Том 30, № 2. С. 339-347. DOI: 10.18372/2225-5036.30.19247.<br>22. Unified Modeling Language Specification Version 2.5.1. URL: https://www.omg.org/spec/UML/2.5.1/PDF<br>(дата звернення: 14.04.2025).</p> 2025-06-28T16:43:47+00:00 ##submission.copyrightStatement## https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3238 KEY ASPECTS OF THE UPDATED ISO/IEC 27002:2022 STANDARD 2025-06-28T17:47:33+00:00 Кухарська Н. П. (Kukharska N.P.) szi@duikt.edu.ua Семенюк С. А. (Semenyuk S.A.) szi@duikt.edu.ua Полотай О. І. (Polotai O.I.) szi@duikt.edu.ua <p>The article analyzes the main changes made to ISO/IEC 27002:2022, a standard that contains detailed guidelines for<br>implementing information security measures. In particular, a key update is considered, which concerns the reduction of the<br>number of security measures (controls) from 114 to 93 by combining and optimizing them. Attention is drawn to the new<br>classification structure, according to which controls are now divided into four categories: organizational, human, physical, and<br>technological. Another innovation is considered in detail - the introduction of attributes, the use of which allows you to more<br>effectively filter, group, and apply security measures in accordance with the specific needs of the organization. The article also<br>describes 11 new controls, namely: information security when using cloud services, ICT readiness for business continuity,<br>configuration management, physical security monitoring, information deletion, data masking, threat intelligence, data leakage<br>prevention, activity monitoring, web content filtering, and secure coding. The changes introduced in ISO/IEC 27002:2022 are&nbsp;aimed at increasing the adaptability of the standard to the dynamic development of information technologies and meeting the<br>growing needs of organizations in the field of cybersecurity. This standard can be used by security managers to select, implement<br>and document information protection measures in accordance with the requirements of ISO/IEC 27001:2022, which will<br>facilitate the audit and certification process.<br><strong>Keywords</strong>: information security, information security management system, standard, ISO/IEC 27002:2013, ISO/IEC<br>27002:2022, security measures, controls.</p> <p><strong>References</strong><br>1. Million Insights: Market Research Reports, Industry Analysis. 2014. Bring Your Own Device (BYOD) Market<br>Size &amp; Forecast Report 2012 – 2020. URL: https://www.millioninsights. Com / industry-reports / bring-your-owndevice-byod-market ? utm_source=pressrelease &amp; utm_ medium=referral&amp;utm_campaign=Abnewswire_Shweta_<br>Sept12&amp;utm_content=Content.<br>2. Global Bring-Your-Own-Device (BYOD) Industry Research Report, In-Depth Analysis of Current Status and<br>Outlook of Key Countries 2023-2028. URL: https://www.industryresearch.biz/ global-bring-your-own-device-byodindustry-23044218.<br>3. Right Scale State of the Cloud Report 2013. URL: https://www.slideshare.net/arms8586/ rightscale-state-ofthe-cloud-report-2013.<br>4. Flexera 2022 State of the Cloud Report. URL: https://m3comva1.frb.io/uploads/docs/ Flexera-State-of-theCloud-Report-2022.pdf.<br>5. ISO/IEC 27001:2022 Information security, cybersecurity and privacy protection — Information security<br>management systems — Requirements. URL: https://www.iso.org/standard/ 54534.html.<br>6. ISO/IEC 27002:2022 Information security, cybersecurity and privacy protection — Information security<br>controls. URL: https://www.iso.org/standard/75652.html.</p> 2025-06-28T16:49:29+00:00 ##submission.copyrightStatement## https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3239 A COMPREHENSIVE MODEL OF SECURITY INTEGRATION INTO THE DEVELOPMENT LIFE CYCLE FOR CLOUD ENVIRONMENTS 2025-06-28T17:47:39+00:00 Лещенко Б. С. (Leshchenko B.S.) szi@duikt.edu.ua <p>This study proposes a comprehensive model specifically designed to address the security challenges associated with<br>modern cloud infrastructures. The proposed model ensures the implementation of security measures from initial planning to the<br>end of the application lifecycle, prioritizing continuous security implementation at all stages. The model focuses on integrating<br>security as an integral part of the development process. It involves ongoing risk management, regular audits, and driving<br>continuous innovation throughout the SDLC. Other key components of the extended model include security governance, safe<br>component decommissioning, monitoring, response, learning, and scaling.<br>The extended model encompasses 20 key components that form a complete set of actions required to securely develop,<br>deploy, and maintain modern software systems. It considers not only technical aspects, but also cultural and procedural factors,<br>which are the basis for sustainable security management.<br>Comparison with existing models demonstrates that the extended model not only addresses gaps in current practices, but<br>also offers a scalable solution that meets the dynamic nature of today's IT environments. The model's emphasis on continuous<br>innovation and adaptation helps organizations stay one step ahead of new threats and changing security requirements.<br><strong>Keywords</strong>: software development lifecycle, SDLC, DevSecOps, cloud security, security management, continuous<br>integration.</p> <p><strong>References</strong><br>1. DATA BREACH MANAGEMENT: AN INTEGRATED RISK MODEL / F. Khan та ін. Information &amp;<br>Management. 2021. Т. 58, № 1. С. 103392. URL: https: // doi.org / 10.1016 / j.im.2020.103392 (дата звернення:<br>25.05.2025).<br>2. Rajapakse R., Zahedi M., Babar M. Challenges and solutions when adopting DevSecOps: A systematic<br>review. Journal of Information and Software Technology. 2021.<br>3. Ruparelia N. B. Software development lifecycle models. ACM SIGSOFT Software Engineering Notes.<br>2010. Т. 35, № 3. С. 8–13. URL: https://doi.org/10.1145/1764810.1764814 (дата звернення: 25.05.2025).<br>4. Jain R., Suman U. A Systematic Literature Review on Global Software Development Life Cycle. ACM<br>SIGSOFT Software Engineering Notes. 2015. Т. 40, № 2. С. 1–14. URL: https://doi.org/10.1145/2735399.2735408<br>(дата звернення: 25.05.2025).<br>5. Acharya B., Sahu P. Software Development Life Cycle Models: A Review Paper. International Journal of<br>Advanced Research in Engineering and Technology. 2020. Т. 11. С. 169–176. URL: https://doi.org/ 10.34218/<br>IJARET.11.12.2020.019.<br>6. Amazon Web Services I. What is SDLC? - Software Development Lifecycle Explained. URL: https: // aws.<br>amazon. com / what-is / sdlc / #:~:text=The % 20software %2 0development % 20lifecycle%20 (SDLC, expectations%<br>20during%20production%20and%20beyond(дата звернення: 25.05.2025).<br>7. Olorunshola O., Ogwueleka F. Review of System Development Life Cycle (SDLC) Models for Effective<br>Application Delivery. Lecture Notes in Networks and Systems. 2021.<br>8. Systematic Literature Review on Security Risks and its Practices in Secure Software Development /<br>R. A. Khan та ін. IEEE Access. 2022. Т. 10. С. 5456–5481. URL: https://doi.org/10.1109/access.2022.3140181(дата<br>звернення: 25.05.2025).<br>9. Solutions - DevSecOps - Addressing Security Challenges in a Fast-Evolving Landscape White Paper. Cisco.<br>URL: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/devsecops-addressing-securitychallenges.html(дата звернення: 25.05.2025).<br>10. Kumar R., Goyal R. Modeling continuous security: A conceptual model for automated DevSecOps using<br>open-source software over cloud (ADOC). Computers &amp; Security. 2020. Т. 97. С. 101967.<br>URL: https://doi.org/10.1016/j.cose.2020.101967(дата звернення: 25.05.2025).<br>11. Zhao X., Clear T., Lal R. Identifying the primary dimensions of DevSecOps: A multi-vocal literature<br>review. Journal of Systems and Software. 2024. С. 112063. URL: https://doi.org/10.1016/j.jss.2024.112063(дата<br>звернення: 25.05.2025).<br>12. GitHub - sottlmarek/DevSecOps: Ultimate DevSecOps library. GitHub. URL: https://github.com/sottlmarek/<br>DevSecOps(дата звернення: 25.05.2025).<br>13. OWASP Devsecops Maturity Model | OWASP Foundation. OWASP Foundation, the Open Source<br>Foundation for Application Security | OWASP Foundation. URL: https://owasp.org/www-project-devsecops-maturitymodel/(дата звернення: 25.05.2025).</p> 2025-06-28T16:55:19+00:00 ##submission.copyrightStatement## https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3241 ANALYSIS OF CYBER THREAT TRENDS AS AN IMPORTANT STAGE OF FINANCIAL SECTOR RISK MANAGEMENT 2025-06-28T17:47:46+00:00 Панаско О. М. (Panasko O.M.) szi@duikt.edu.ua Сагун А. В. (Sagun A.V.) szi@duikt.edu.ua Гавриш О. С. (Gavrish O.S.) szi@duikt.edu.ua <p>Analysis of cyber threats to the financial sector updates the concept of a risk-based approach in the activities of financial<br>institutions and allows for timely response to incidents. Tracking and understanding cyber threat trends contribute to effective<br>cyber risk management. To determine the vector of changes in the threat landscape, it is important to take into account the<br>experience of different countries in order to adapt best practices to Ukrainian realities. In the conditions of a full-scale war,<br>Ukrainian financial institutions, in particular banks, demonstrated a noticeable increase in resilience to cyber-attacks. The<br>experience gained in such difficult conditions allowed banks to strengthen their technical and organizational capabilities to<br>counter incidents. An important role in this was played by the coordinated interaction of state bodies and private organizations,<br>CERT-UA, the activities of specialized units of Ukraine - the Cyber Police Department of the National Police of Ukraine, the<br>State Cyber Protection Center of the State Service for Special Communications and Information Protection of Ukraine, the<br>Critical Infrastructure Protection Department of the NBU, as well as interbank cooperation in the field of exchanging<br>information about threats, international cooperation in the field of ensuring cybersecurity in the banking sector. This approach<br>is the basis for increasing the speed of response to cyber incidents and will contribute to the overall strengthening of cyber<br>protection of the financial sector of Ukraine.<br><strong>Keywords</strong>: cyber threat landscape of the financial sector, cyber resilience of banks, cybercriminal organizations, DDoS<br>attacks, CERT-UA, State Cyber Protection Center of the State Service for Special Communications and Information Protection<br>of Ukraine, NBU, MISP-UA.</p> <p><strong>References</strong><br>1. Кібербезпека в інформаційному суспільстві: Інформаційно-аналітичний дайджест / відп. ред.<br>О.Довгань; упоряд. О.Довгань, Л.Литвинова, С.Дорогих; Державна наукова установа «Інститут інформації,<br>безпеки і права НАПрН України»; Національна бібліотека України ім. В.І.Вернадського. К., 2023. №9 (вересень).<br>351 с.<br>2. Forcadell F.J., Aracil E., Ubeda F. The Impact of Corporate Sustainability and Digitalization on International<br>Banks’ Performance // Global Policy / Volume 11 (Supplement 1). pp.18-27. 2020. https://doi.org/10.1111/1758-<br>5899.12761.<br>3. Карчева І. Я. Сучасні тенденції інноваційного розвитку банків України в контексті концепції банк 3.0<br>// Фінансовий простір. 2015. № 3(19). С. 299-305.<br>4. Кльоба Л. Г. Цифровізація інноваційний напрям розвитку банків // Ефективна економіка [Електронний<br>журнал]. 2018. № 12. URL: http://www.economy.nayka.com.ua/?op=1&amp;z=6741 (дата звернення: 10.08.2024). DOI:<br>10.32702/2307-2105-2018.12.84.<br>5. Корнівська В. О. Цифровий банкінг: ризики фінансової дигіталізації // Проблеми економіки. 2017. № 3.<br>С. 254-261.<br>6. Шелудько С. А., Браткевич П. П. Вплив цифровізації на банківський бізнес в Україні // Приазовський<br>економічний вісник. 2019. Вип. 5(16). С. 334-339. DOI: https://doi.org/10.32840/2522-4263/2019-5-57.<br>7. Реверчук С., Творидло О. Цифровізація банківського бізнесу: виклики та можливості для державного<br>регулювання // Економіка та суспільство. 2023. № 55. DOI: 10.32782/2524-0072/2023-55-45.<br>8. Альт Р., Бек Р., Смітс М. Т. ФінТех і трансформація фінансової галузі // Електронні ринки. – 2018. – Т.<br>28. С. 235-243. DOI: 10.1007/s12525-018-0310-9.<br>9. Diener F., Špaček M. Digital Transformation in Banking: A Managerial Perspective on Barriers to Change //<br>Sustainability. 2021. Vol. 13, No. 4. P. 2032-2058. DOI:10.3390/su13042032.<br>10. Кретов Д., Міндова О. Цифровізація банківського сектору України: сучасний стан та перспективи<br>розвитку // Сталий розвиток економіки. 2024. № 2(49). С. 223–228. DOI: 10.32782/2308-1988/2024-49-35.<br>11. Криклій О. А. Теорія та практика забезпечення кіберстійкості банків // Ефективна економіка. 2020. №<br>10. URL: http://www.economy.nayka.com.ua/?op=1&amp;z=8248. DOI: 10.32702/2307-2105-2020.10.50.<br>12. ENISA Threat Landscape 2024 [Електронний ресурс]. Режим доступу: https://www.enisa.europa.eu/<br>publications/enisa-threat-landscape-2024. Назва з екрана. Дата звернення: 05.03.2025.<br>13. ENISA Threat Landscape 2023 [Електронний ресурс]. Режим доступу: https://www.enisa.europa.eu/<br>publications/enisa-threat-landscape-2023. Назва з екрана. Дата звернення: 05.03.2025.<br>14. 2024 Data Breach Investigations Report [Електронний ресурс]. Режим доступу: https://www.verizon.com/<br>business/resources/T2a8/reports/2024-dbir-data-breach-investigations-report.pdf. Назва з екрана. Дата звернення:<br>05.03.2025.<br>15. DBIR 2023 Data Breach Investigations Report [Електронний ресурс]. Режим доступу: https://inquest.net<br>/wp-content/uploads/2023-data-breach-investigations-report-dbir.pdf. Назва з екрана. Дата звернення: 05.03.2025.<br>16. Кількість кібератак на рік на критичну інфраструктуру України зросла з 800 до 4500: СБУ назвала<br>організаторів [Електронний ресурс]. Режим доступу: https://minfin.com.ua/ua/2024/05/07/126427603/. – Назва з<br>екрана. – Дата звернення: 15.03.2025.<br>17. ENISA Threat Landscape: Finance Sector [Електронний ресурс]. Режим доступу: https://www.enisa.<br>europa.eu/sites/default/files/2025-02/Finance%20TL%202024_Final.pdf. Назва з екрана. Дата звернення: 09.05.2025.<br>18. В Україні атакували "Приватбанк", "Ощадбанк" та сайт міноборони. Атаку відбили [Електронний<br>ресурс]. Режим доступу: https://www.bbc.com/ukrainian/news-60394077. Назва з екрана. Дата звернення:<br>11.03.2025.<br>19.Масштабна DDOS-атака на monobank припинилася [Електронний ресурс]. Режим доступу:<br>https://forbes.ua/news/masshtabna-ddos-ataka-na-monobank-pripinilasya-19082024-23092. Назва з екрана. Дата<br>звернення: 23.03.2025.<br>20. LockBit Demands $20m for 1.5TB of Data from Bank Syariah Indonesia Cyber Attack [Електронний ресурс].<br>Режим доступу: https://thecyberexpress.com/lockbit-bank-syariah-indonesia-cyber-attack/.Назва з екрана. Дата<br>звернення: 12.03.2025.<br>21. A Global Police Operation Just Took Down the Notorious LockBit Ransomware Gang [Електронний ресурс].<br>Режим доступу: https://www.wired.com/story/lockbit-ransomware-takedown-website-nca-fbi/. Назва з екрана. Дата<br>звернення: 23.03.2025.<br>22. ALPHV BlackCat Ransomware: A Technical Deep Dive and Mitigation Strategies [Електронний ресурс].<br>Режим доступу: https://www.trustwave.com/en-us/resources/blogs/trustwave-blog/alphv-blackcat-ransomware-a-technical-deep-dive-and-mitigation-strategies/. Назва з екрана. Дата звернення: 23.03.2025.<br>23. Share of financial organizations worldwide hit by ransomware attacks from 2021 to 2024 [Електронний<br>ресурс]. Режим доступу: https://www.statista.com/statistics/1460896/rate-ransomware-attacks-global/. Назва з екрана.<br>Дата звернення: 25.03.2025.<br>24. Attack Methods and Payloads [Електронний ресурс]. Режим доступу: https://www.infosecuritymagazine.com/news/phishing-campaign-targets-ukraines/. Назва з екрана. Дата звернення: 15.04.2025.<br>25. 35% of Cybersecurity Incidents are Business Email Compromise (BEC) Phishing Attacks [Електронний<br>ресурс]. Режим доступу: https://grsb.bank/35-of-cybersecurity-incidents-are-business-email-compromise-bec-phishing-attacks/. Назва з екрана. Дата звернення: 10.04.2025.<br>26. SRP Federal Credit Union reports data breach affecting more than 240,000 people [Електронний ресурс].<br>Режим доступу: https://www.augustachronicle.com/story/news/crime/2024/12/24/srp-federal-credit-union-announcesdata-breach-to-240000-plus-people-cybersecurity-crime-nitrogen/77181661007/. Назва з екрана. Дата звернення:<br>17.03.2025.<br>27. Bank of America попереджає клієнтів про витік даних і намагається виправити ситуацію [Електронний<br>ресурс]. Режим доступу: https: // fintechinsider.com.ua/bank-of-america-poperedzhaye-kliyentiv-pro-vytik-danyh-inamagayetsya-vypravyty-sytuacziyu/. Назва з екрана. Дата звернення: 23.03.2025.<br>28. Top 10 Biggest Cyber Attacks of 2024 &amp; 25 Other Attacks to Know About! [Електронний ресурс]. Режим<br>доступу: https: // www.cm-alliance.com / cybersecurity-blog / top-10-biggest-cyber-attacks-of-2024-25-other-attacksto-know-about. Назва з екрана. Дата звернення: 09.03.2025.<br>29. Як українські банки захищаються від кібератак в умовах війни: розповідає Євген Балютов, директор з<br>інформаційної безпеки Райффайзен Банку. [Електронний ресурс]. Режим доступу: https://ua.news/ua/technologies/<br>kak-ukraynskye-banky-zashhyshhayutsya-ot-kyberatak-v-uslovyyah-vojny-rasskazyvaet-evgenyj-balyutov-dyrektor-poynformatsyonnoj-bezopasnosty-rajffajzen-banka. Назва з екрана. Дата звернення: 03.03.2025.</p> 2025-06-28T17:02:11+00:00 ##submission.copyrightStatement## https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3242 ANALYSIS OF METHODS FOR PROTECTING THE VOICE INFORMATION TRANSMISSION SYSTEM 2025-06-28T17:48:00+00:00 Юрх Н. Г. (Yurkh N.G.) szi@duikt.edu.ua Петченко М. В. (Petchenko M.V.) szi@duikt.edu.ua Іванченко І. С. (Ivanchenko I.S.) szi@duikt.edu.ua <p>The article considers modern approaches to protecting voice information transmission systems in the face of growing<br>cyber threats, especially in the context of hybrid warfare and the actions of the legal regime of martial law. The emphasis is on<br>the importance of ensuring the confidentiality, integrity and availability of voice content transmitted via wired and wireless<br>communication channels in the civilian and military sectors. An analysis of classical and modern protection methods, including<br>cryptographic (AES, RSA, ECC), steganographic, adaptive and organizational and technical means, is carried out. The<br>feasibility of using SRTP, ZRTP protocols, as well as dynamic key management technologies, intrusion detection systems (IDS)<br>and acoustic and vibration shielding methods is substantiated. It is shown that the effectiveness of protection increases<br>significantly when combining several levels of security and adaptation to environmental conditions. The article presents a<br>comparative table of methods evaluation. The conclusions are supported by data from domestic and foreign scientific<br>publications, which allows identifying promising directions for the development of voice information protection systems.<br><strong>Keywords</strong>: information protection; speech information; steganography; cryptography; adaptive methods;<br>communication systems; security of speech information transmission.</p> <p><strong>References</strong><br>1. Stallings W. (2020). Cryptography and Network Security: Principles and Practice. https://mrce.in/ebooks/<br>Cryptography%20&amp;%20Network%20Security%208th%20Ed.pdf.<br>2. Schneier B. (2020). Applied Cryptography.<br>3. Koblitz N. (1994). A Course in Number Theory and Cryptography https: // doi.org /10.1007/978-1-4419-<br>85927.<br>4. Johnson N.F., Duric Z., Jajodia S. (2001). Information Hiding. https://doi.org/10.1007/978-1-4615-4375-6.<br>5. Sklavos N., Zhang X. (2007). Wireless Security and Cryptography. https://doi.org/10.1201/9780849387692.<br>6. Кузнецов О.О., Євсеєв С.П., Король О.Г. Захист інформації в інформаційних системах. Методи<br>традиційної криптографії. Х.: Вид. ХНЕУ, 2010. 316 с.<br>7. Baugher M., McGrew D., Naslund M., Carrara E., Norrman K. The Secure Real-time Transport Protocol<br>(SRTP). RFC 3711. Internet Engineering Task Force, 2004. 54 p.<br>8. Zimmermann P., Johnston A., Callas J. ZRTP: Media Path Key Agreement for Unicast Secure RTP. RFC 6189.<br>IETF, 2011. 84 p.<br>9. Хорошко В. О. Основи комп'ютерної стеганографії : навч. пос. / В.О. Хорошко, В.О. Азаров В.О., М. Є.<br>Шелест. Вінниця : ВДТУ, 2003. 143 с.<br>10.Johnson, N. F., &amp; Katzenbeisser, S. A survey of steganographic techniques / N. F. Johnson, S. Katzenbeisser<br>// Information Hiding: Techniques for Steganography and Digital Watermarking. Boston: Artech House, 2016. P. 43–78.<br>11. Леонов, М. В. Використання адаптивних засобів захисту в мобільних системах зв'язку / М. В. Леонов //<br>Наука і оборона. 2022. №1. С. 56-62.<br>12. Стратегія кібербезпеки України: Указ Президента України від 26.08.2021 № 447/2021.<br>https://www.president.gov.ua/documents/4472021-40013.<br>13. Домарев В.В. Безпека інформаційних технологій. Системний підхід. Київ: ТИД «ДС», 2004. 992 с.<br>14. Хорошко В.А., Чекатков А.А. Методи і засоби захисту інформації. Київ: Юниор, 2003. 501 с.<br>15. Домарєв В.В. Сучасні методичні та організаційні підходи до захисту інформації. Збірник наукових<br>статей ХНЕУ. Харків, 2008. С. 17-18.<br>16. Хома В.В. Методи та засоби забезпечення конфіденційності телефонних повідомлень. Сучасна<br>спеціальна техніка Київ, 2009. №3(18). С. 50-59.<br>17. Засоби ТЗІ, які мають експертний висновок про відповідність вимогам технічного захисту інформації.<br>https://cip.gov.ua/ua/news/zasobi-tzi-yaki-mayut-ekspertnii-visnovok-pro-vidpovidnist-do-vimog-tekhnichnogozakhistu-informaciyi.</p> 2025-06-28T17:07:29+00:00 ##submission.copyrightStatement## https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3243 METHODOLOGY FOR STUDYING THE SECURITY STATUS OF CLOUD TECHNOLOGIES USING OSINT TOOLS 2025-06-28T17:48:07+00:00 Івкова В. С. (Ivkova V.S.) szi@duikt.edu.ua Банах Р. І. (Banakh R.I.) szi@duikt.edu.ua <p>The article examines the current problem of ensuring cybersecurity of cloud storage in the context of rapid digital<br>transformation and the growing dependence of organizations on cloud technologies. The authors propose a systematic<br>methodology for assessing the security status of cloud environments using open-source intelligence (OSINT) tools, which allows<br>identifying potential vulnerabilities without direct interaction with the research object. The developed methodology covers the<br>full cycle of OSINT research: from goal setting and selection of relevant tools to data collection, analysis, and documentation.<br>Particular attention is paid to threats specific to cloud storage, such as misconfigurations, account compromise, unprotected<br>APIs, data leaks, and insider risks. Examples of OSINT tools and techniques for identifying these threats are presented (Shodan,<br>Censys, Google Dorks, Have I Been Pwned, etc.). The article also emphasizes the importance of an ethical approach to research,<br>emphasizing the need to comply with the law when collecting information from open sources. The advantages of OSINT as a<br>tool for safe, cost-effective and operational assessment of the level of security of cloud infrastructure are separately considered.<br>The proposed methodology is a valuable practical tool for cybersecurity professionals, auditors and researchers, allowing for<br>effective detection of vulnerabilities in<br><strong>Keywords</strong>: cybersecurity, cloud storage, OSINT, open-source intelligence, data security, vulnerabilities, risk analysis.</p> <p><strong>References</strong><br>1. Таксін О. П., Корнійчук О. М. Безпека хмарних обчислень: актуальні загрози та методи захисту //<br>Інформаційні технології та комп'ютерна інженерія. 2020. № 1. С. 55-62.<br>2. Subashini S., Kavitha V. A survey on security issues in cloud computing // Journal of Network and Computer<br>Applications. 2011. Vol. 34, No. 1. P. 1-11., Режим доступу: https://doi.org/10.1016/j.jnca.2010.07.006<br>3. Ничик В. М., Романов В. В., Терещенко Т. О. Розвідка на основі відкритих джерел: концептуальні засади<br>та інструментарій // Інформаційна безпека. 2019. № 1. С. 15-22.<br>4. Bremmer J. N. Open source intelligence techniques: Resources for searching and analyzing online information.<br>Lulu.com, 2010.<br>5. Shutenko V., Teres K. Must-Know Cloud Security Statistics for 2025 Режим доступу: https://www.<br>techmagic.co/blog/cloud-security-statistics<br>6. Zissis D., Lekkas D. Addressing cloud computing security issues // Future Generation Computer Systems. 2012.<br>Vol. 28, No. 3. P. 583-592, Режим доступу: https://doi.org/10.1016/j.future.2010.12.006<br>7. Ранич В. М., Ковальчук С. В. Аналіз вразливостей хмарних сервісів зберігання даних // Захист<br>інформації. 2018. № 2. С. 45-51.<br>8. Lande D., Shnurko-Tabakova E. OSINT as a part of cyber defense system. Theoretical and Applied<br>Cybersecurity. 2019. Vol. 1, no. 1. URL: https://doi.org/10.20535/tacs.2664-29132019.1.169091<br>9. CloudSafe: A Tool for an Automated Security Analysis for Cloud Computing / S. An et al. 2019 18th IEEE<br>International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International<br>Conference On Big Data Science And Engineering (TrustCom/BigDataSE), Rotorua, New Zealand, 5–8 August 2019.<br>2019. URL: https://doi.org/10.1109/trustcom/bigdatase.2019.00086<br>10. Cloud Property Graph: Connecting Cloud Security Assessments with Static Code Analysis / C. Banse et<br>al. 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), Chicago, IL, USA, 5–10 September 2021.<br>2021. URL: https://doi.org/10.1109/cloud53861.2021.00014<br>11. Mukhopadhyay A., Luther K. OSINT Clinic: Co-designing AI-Augmented Collaborative OSINT<br>Investigations for Vulnerability Assessment. CHI 2025: CHI Conference on Human Factors in Computing Systems,<br>Yokohama Japan. New York, NY, USA, 2025. P. 1–22. URL: https://doi.org/10.1145/3706598.3713283</p> 2025-06-28T17:13:06+00:00 ##submission.copyrightStatement## https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3244 ANALYSIS OF OPPORTUNITIES TO IMPROVE THE SECURITY OF CLOUD INFRASTRUCTURE USING NLP AND ML 2025-06-28T17:48:14+00:00 Абібулаєв А. Р. (Abibulaev A.R.) szi@duikt.edu.ua Піскозуб А. З. (Piskozub A.Z.) szi@duikt.edu.ua <p>As data volumes and the complexity of multi-cloud environments grow, ensuring cybersecurity of cloud infrastructure<br>is becoming an increasingly difficult task. Traditional approaches based on static rules, signature analysis and centralized SIEM<br>systems show limited effectiveness when working with dynamic resources and adaptive attacks, such as ART campaigns, insider<br>threats or zero-day exploits. This necessitates the implementation of intelligent analysis and response mechanisms that can<br>quickly correlate heterogeneous events and reduce the number of false positives. The integration of natural language processing<br>(NLP) and machine learning (ML) technologies opens up new opportunities for automating incident analytics, semantic parsing<br>of event logs (hereinafter referred to as logs) and classifying threats by risk level. NLP modules allow processing large arrays<br>of unstructured text data — event logs, user messages and configuration files — and identifying sociotechnical attack patterns.<br>ML algorithms, in turn, provide anomaly detection using classification, clustering, and behavioral analytics (UEBA), which<br>allows you to predict potential attacks before they are implemented. Modern cybersecurity concepts, in particular the Zero Trust<br>model and the Principle of Least Privilege (PoLP), combined with the Security as Code approach, create the basis for dynamic<br>access control and automated rights management. Architectural solutions combining Cloud IAM, PAM, and CIEM are<br>complemented by AI-driven mechanisms for real-time query context assessment and automated verification of excessive<br>privileges. This helps reduce response time and increase the adaptability of security policies. This study systematically reviewed<br>more than ten modern scientific publications covering practical implementations of intelligent DLP systems, automated threat<br>detection mechanisms in AWS, Azure, and GCP, as well as approaches to integrating NLP/ML into CI/CD processes and SOAR<br>platforms. Requirements for building adaptive, context-sensitive solutions are formulated, taking into account scalability,<br>interpretable artificial intelligence (Explainable AI) and compliance with ethical and legal norms (GDPR, ISO/IEC 27001). The<br>results of the study prove that a combined approach based on NLP and ML allows to significantly reduce the number of false<br>positives, reduce the average response time to incidents and increase the accuracy of detecting complex threats. The obtained<br>conclusions will be useful for IT departments, security engineers and DevOps teams seeking to optimize cyber protection<br>processes in dynamic multi-cloud environments.<br><strong>Keywords</strong>: cybersecurity, cloud technologies, NLP, ML, Zero Trust, Security as Code, UEBA, DLP.</p> <p><strong>References</strong><br>1. K.C. Sunkara, K. Narukulla, AI Enhanced Ontology Driven NLP for Intelligent Cloud Resource Query<br>Processing Using Knowledge Graphs, Independent Research Report, IEEE Senior Members, Raleigh/San Jose, USA<br>(2023). doi: 10.48550/arXiv.2502.18484.<br>2. Rajendra Muppalaneni, Anil Chowdary Inaganti and Nischal Ravichandran, AI-Enhanced Data Loss<br>Prevention (DLP) Strategies for Multi-Cloud Environments, Journal of Computing Innovations and Applications, 2(2),<br>pp. 1–13. (2024). Available at: https://ciajournal.com/index.php/jcia/article/view/9 (Accessed: 10 May 2025).<br>3. Jaya J. Application of Deep Learning in Cloud Security. Deep Learning Approaches to Cloud Security.<br>(2022). doi: 10.1002/9781119760542.ch12<br>4. J.S. Nimbhorkar, AI Enabled Cloud RAN Test Automation: Automatic Test Case Prediction Using Natural<br>Language Processing and Machine Learning Techniques, M.Sc. Thesis, KTH Royal Institute of Technology, Ericsson<br>AB, Stockholm (2023). URN: urn:nbn:se:kth:diva-340090<br>5. T.K. Vashishth, V. Sharma, B. Kumar, S. Chaudhary, R. Panwar, Enhancing Cloud Security: The Role of<br>Artificial Intelligence and Machine Learning, In: IGI Global, Chapter 4 (2024). doi: 10.4018/979-8-3693-1431-9.ch004.<br>6. R.K. Jha, Strengthening Smart Grid Cybersecurity: An In-Depth Investigation into the Fusion of Machine<br>Learning and Natural Language Processing, J. Trends Comput. Sci. Smart Technol. 5(3) (2023) 284–301. doi:<br>10.36548/jtcsst.2023.3.005.<br>7. Y.I. Alzoubi, A. Mishra, A.E. Topcu, Research trends in deep learning and machine learning for cloud<br>computing security, Artif. Intell. Rev. 57 (2024) 132. doi: 10.1007/s10462-024-10776-5.<br>8. Martseniuk, Y., Partyka, A., Harasymchuk, O., Nyemkova, E., Karpinski, M. Shadow IT risk analysis in<br>public cloud infrastructure (2024) CEUR Workshop Proceedings, 3800, pp. 22-31. URN: urn:nbn:de:0074-3800-2.<br>9. Martseniuk, Y., Partyka, A., Harasymchuk, O., Shevchenko, S. Universal centralized secret data management<br>for automated public cloud provisioning (2024) CEUR Workshop Proceedings, 3826, pp. 72-81. URN: urn:nbn:de:0074-<br>3826-1.<br>10. Volodymyr Khoma, Aziz Abibulaiev, Andrian Piskozub, and Taras Kret. Comprehensive Approach for<br>Developing an Enterprise Cloud Infrastructure (2024) CEUR Workshop Proceedings, 3654, pp. 201-215. URN:<br>urn:nbn:de:0074-3654-7.<br>11. S.R. Mamidi, The Role of AI and Machine Learning in Enhancing Cloud Security, J. Artif. Intell. Gen. Sci.<br>3(1) (2024). doi: 10.5281/zenodo.10987665.<br>12. J. Wang, AI/ML-Powered Cybersecurity and Cloud Computing Strategies for Optimized Business<br>Intelligence in ERP Cloud, ResearchGate (2023). doi: 10.13140/RG.2.2.27926.66882.<br>13. K. Rangappa, A.K.B. Ramaswamy, M. Prasad, S.A. Kumar, A Secure Cloud Service for Managing User’s<br>Crucial Data Using NLP, Blockchain, and Smart Contracts, Preprints.org (2024). doi: 10.20944/preprints202409.1738.v1.<br>14. Buttar AM, Shahzad F, Jamil U. Conversational AI: Security Features, Applications, and Future Scope at<br>Cloud Platform. Conversational Artificial Intelligence, (2024). doi: 10.1002/9781394200801.ch3.<br>15. T.-M. Georgescu, Natural Language Processing Model for Automatic Analysis of Cybersecurity-Related<br>Documents, Symmetry 12(3) (2020) 354. doi: 10.3390/sym12030354.<br>16. Belal MM, Sundaram DM. Comprehensive review on intelligent security defences in cloud: Taxonomy,<br>security issues, ML/DL techniques, challenges and future trends. Journal of King Saud University-Computer and<br>Information Sciences. (2022). doi: 10.1016/j.jksuci.2022.08.035.<br>17. J. Wang, AI/ML-Powered Cybersecurity and Cloud Computing Strategies for Optimized Business<br>Intelligence in ERP Cloud, ResearchGate (2023). doi: 10.13140/RG.2.2.27926.66882.<br>18. Nina P, Ethan K. AI-driven threat detection: Enhancing cloud security with cutting-edge technologies.<br>International Journal of Trend in Scientific Research and Development, Volume-4, pp.1362-1374. (2019). Available at:<br>https://www.ijtsrd.com/papers/ijtsrd29520.pdf (Accessed 12 May 2025).<br>19. Z. Kilhoffer and M. Bashir, Cloud Privacy Beyond Legal Compliance: An NLP Analysis of Certifiable<br>Privacy and Security Standards, IEEE Cloud Summit, Washington, DC, USA, pp. 79-86, (2024). doi: 10.1109/CloudSummit61220.2024.00020.<br>20. Sunkara KC, Narukulla K. AI Enhanced Ontology Driven NLP for Intelligent Cloud Resource Query<br>Processing Using Knowledge Graphs, (2025). doi: 10.48550/arXiv.2502.18484.<br>21. Mamidi SR. The Role of AI and Machine Learning in Enhancing Cloud Security. Journal of Artificial<br>Intelligence General science (JAIGS), (2024). doi: 10.60087/jaigs.v3i1.161.<br>22. D. M. Rakgoale, H. I. Kobo, Z. Z. Mapundu and T. N. Khosa, A Review of AI/ML Algorithms for Security<br>Enhancement in Cloud Computing with Emphasis on Artificial Neural Networks, 4th International Multidisciplinary<br>Information Technology and Engineering Conference (IMITEC), Vanderbijlpark, South Africa, pp. 329-336, (2024). doi:<br>10.1109/IMITEC60221.2024.10851076.<br>23. Talati, N. D. V., Scalable AI and data processing strategies for hybrid cloud environments, World Journal of<br>Advanced Research and Reviews, 10(3), pp. 482–492, (2021), doi: 10.30574/wjarr.2021.10.3.0289.<br>24. Al Saidat MR, Yerima SY, Shaalan K. Advancements of SMS Spam Detection: A Comprehensive Survey<br>of NLP and ML Techniques. Procedia Computer Science, (2024). doi: 10.1016/j.procs.2024.10.198.<br>25. H. Aldawsari, S.A. Kouchay, Integrating AI and Machine Learning Algorithms in Cloud Security<br>Frameworks for Enhanced Proactive Threat Detection and Mitigation, J. Eng. Technol. Manag. 74 (2024). Available at:<br>https://ciajournal.com/index.php/jcia/article/view/9 (Accessed: 11 May 2025).<br>26. Mohamed, N., Current trends in AI and ML for cybersecurity: A state-of-the-art survey. Cogent<br>Engineering, 10(2), (2023). doi: 10.1080/23311916.2023.2272358.</p> 2025-06-28T17:18:06+00:00 ##submission.copyrightStatement## https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3245 RESEARCH ON THE EFFECTIVENESS OF XDR SOLUTIONS FOR DETECTING AND ELIMINATING THREATS 2025-06-28T17:48:29+00:00 Опірський І. Р. (Opirsky I.R.) szi@duikt.edu.ua Олійник А. В. (Oliynyk A.V.) szi@duikt.edu.ua Василишин С. І. (Vasylyshyn S.I.) szi@duikt.edu.ua <p>In the context of digital transformation, when organizations’ dependence on IT infrastructure is rapidly increasing, the<br>level of cyber threats is also increasing. According to current data, the number of cyberattacks on organizations in 2024 increased<br>by 75% compared to the previous year, reaching 1876 incidents per week. In response to these challenges, the evolution of<br>protection tools is taking place - traditional solutions are being replaced by comprehensive XDR (Extended Detection and<br>Response) systems. The study focuses on a comparative analysis of XDR and EDR (Endpoint Detection and Response)<br>solutions, revealing their fundamental differences and practical effectiveness. XDR platforms provide advanced data collection<br>and analysis from various sources (network events, cloud services, email) instead of being limited to only end devices, which<br>allows you to form a holistic picture of the organization’s security. Special attention is paid to mechanisms for automating<br>memory forensics in XDR systems: it was investigated that modern platforms are capable of automating data collection from<br>RAM and deploying specialized DFIR utilities through the "remediation" mechanism. A practical comparison of the detection<br>of the same EDR and XDR threats was conducted using the example of a multi-phase phishing attack using LOLBINs, which<br>demonstrated the significant advantages of XDR in response speed and accuracy. It was established that XDR solutions<br>demonstrate higher efficiency due to the correlation of events from different sources, the use of machine learning and behavioral<br>analytics. The main XDR solutions on the market (CrowdStrike Falcon, SentinelOne Singularity, Microsoft Defender, Elastic<br>Security) and their features in the implementation of protection mechanisms were analyzed. The results of the study confirm<br>that the integration of XDR with additional systems (network devices, cloud services, authentication systems) creates a&nbsp;comprehensive protection system, significantly increasing the ability of organizations to counter modern complex cyber threats.<br>Additionally, the study found that XDR systems effectively detect hidden fileless attacks and rootkits, which traditionally pose<br>the greatest challenge for conventional defenses. Another important aspect is the ability of XDR solutions to reduce the number<br>of false positives through contextual analysis of events, which reduces the burden on security teams and increases the overall<br>efficiency of SOC operations. Despite the significant advantages of XDR, the study emphasizes that for full-fledged protection<br>of critical infrastructure, it is necessary to combine automated XDR solutions with deep expertise of DFIR specialists, especially<br>when analyzing new and unknown threats.<br><strong>Keywords</strong>: XDR, EDR, CrowdStrike Falcon, Microsoft Defender, malware, memory forensics, LOLBINs, fileless<br>attacks, cybersecurity, integration of defense systems.</p> <p><strong>References</strong><br>1. Check Point Research Reports Highest Increase of Global Cyber Attacks Seen in Last Two Years – a 30%<br>Increase in Q2 2024 Global Cyber Attacks. URL: https://blog.checkpoint.com/research/check-point-research-reportshighest-increase-of-global-cyber-attacks-seen-in-last-two-years-a-30-increase-in-q2-2024-global-cyber-attacks (дата<br>звернення: 10.05.2025).<br>2. Microsoft Digital Defense Report: 600 million cyberattacks per day around the globe. URL:<br>https://news.microsoft.com/en-cee/2024/11/29/microsoft-digital-defense-report-600-million-cyberattacks-per-dayaround-the-globe/ (дата звернення: 10.05.2025).<br>3. «XDR: The Evolution of Endpoint Security Solutions – Superior Extensibility and Analytics to Satisfy the<br>Organizational Needs of the Future» [Електронний ресурс]. Режим доступу: https://www.researchgate.net/ publication/<br>354190628 _ XDR _ The_ Evolution_ of_ Endpoint_ Security_ Solutions_ Superior_ Extensibility_ and_ Analytics_to_<br>Satisfy_the_Organizational_Needs_of_the_Future.<br>4. «Performance Evaluation of Open-Source Endpoint Detection and Response Combining Google Rapid<br>Response and Osquery for Threat Detection» [Електронний ресурс]. Режим доступу: https://www.researchgate.net/<br>publication / 358697816 _ Performance _Evaluation_of_Open-Source_Endpoint_Detection_and_Response_Combining_<br>Google_Rapid_Response_and_Osquery_for_Threat_Detection.<br>5. «Evolution of Endpoint Detection and Response (EDR) in Cyber Security: A Comprehensive Review»<br>[Електронний ресурс]. Режим доступу: https: // www.e3s-conferences.org / articles / e3sconf / pdf / 2024/86/e3sconf_<br>rawmu2024_01006.pdf.<br>6. Demystifying Behavior-Based Malware Detection at Endpoints» [Електронний ресурс]. Режим доступу:<br>https://arxiv.org/html/2405.06124v1.<br>7. XDR: The Evolution of Endpoint Security Solutions -Superior Extensibility and Analytics to Satisfy the<br>Organizational Needs of the Future [Електронний ресурс]. Режим доступу: https://www.researchgate.net/publication/<br>354190628 _ XDR _ The _ Evolution_of_Endpoint _ Security _ Solutions _ Superior _ Extensibility_and_Analytics_to_<br>Satisfy_the_Organizational_Needs_of_the_Future#:~:text=XDR%3A%20The%20Evolution%20of%20Endpoint,Organ<br>izational.<br>8. Antivirus vs EDR vs XDR: Key Differences and Benefits. URL: https://www.threatintelligence.com/blog/<br>antivirus-vs-edr-vs-xdr (дата звернення: 10.05.2025).<br>9. Extended Detection and Response (XDR). CrowdStrike. URL: https: // www.crowdstrike.com/en-us/cybersecurity-101/endpoint-security/extended-detection-and-response-xdr/ (дата звернення: 10.05.2025).<br>10. Microsoft 365 Defender integration with Microsoft Sentinel. Microsoft Learn. URL: https://learn.microsoft.<br>com / en-us / azure / sentinel / microsoft-365-defender-sentinel-integration?tabs=defender-portal (дата звернення:<br>10.05.2025).<br>11. Block C2 communication with Defender for Endpoint. URL: https://jeffreyappel.nl/block-c2-communicationwith-defender-for-endpoint/ (дата звернення: 10.05.2025).<br>12. Fake CAPTCHA websites hijack your clipboard to install information stealers. Malwarebytes. URL:<br>https://www.malwarebytes.com/blog/news/2025/03/fake-captcha-websites-hijack-your-clipboard-to-install-informationstealers (дата звернення: 10.05.2025).<br>13. Fileless malware threats: Recent advances, analysis approach through memory forensics and research<br>challenges: [Електронний ресурс]. Режим доступу: https: // www.researchgate.net/publication/364769363_Fileless_<br>malware_threats_Recent_advances_analysis_approach_through_memory_forensics_and_research_challenges.<br>14. A Malware Detection Approach Based on Deep Learning and Memory Forensics: [Електронний ресурс].<br>Режим доступу: https://www.mdpi.com/2073-8994/15/3/758.<br>15. Microsoft Detection Tools Sniff Out Fileless Malware: [Електронний ресурс]. Режим доступу: https://<br>www.trendmicro.com / vinfo / us /security/news/cybercrime-and-digital-threats/microsoft-detection-tools-sniff-out-fileless-malware.<br>16. The Role of Anomaly Detection in XDR: Enhancing Threat Visibility and Response: [Електронний ресурс].<br>Режим доступу: https://fidelissecurity.com/cybersecurity-101/xdr-security/anomaly-detection-in-xdr-solutions/.<br>17. Cortex XDR IOC rule details: [Електронний ресурс]. Режим доступу: https://docs-cortex.paloaltonetworks.<br>com/r/Cortex-XDR/Cortex-XDR-Cloud-Documentation/IOC-rule-details.<br>18. XDR Threat Investigation: [Електронний ресурс]. Режим доступу: https: // docs.trendmicro.com/en-us/<br>documentation/article/trend-vision-one-xdr-threat-investigation-whatsnew.<br>19. Perks of Sigma and YARA rules in an EDR: [Електронний ресурс]. Режим доступу: https://harfanglab.io<br>/blog/product/perks-sigma-yara-edr/.<br>20. What Are SIGMA Rules: [Електронний ресурс]. Режим доступу: https://socprime.com/blog/sigma-rulesthe-beginners-guide/.<br>21. What is a C2 server? [Електронний ресурс]. Режим доступу: https://www.portnox.com/cybersecurity101/what-is-a-c2-server/.<br>22. Offensive WMI – Active Directory Enumeration [Електронний ресурс]. Режим доступу: https://0xinfection.<br>github.io/posts/wmi-ad-enum/.<br>23. DKIM, SPF and DMARC Guid [Електронний ресурс]. Режим доступу: https: // www.mimecast.com/<br>content/dkim-spf-dmarc-explained/.<br>24. Block C2 communication with Defender for Endpoint: [Електронний ресурс]. Режим доступу: https://<br>jeffreyappel.nl/block-c2-communication-with-defender-for-endpoint/.<br>25. How Cortex XDR Global Analytics Protects Against Supply Chain Attacks: [Електронний ресурс]. Режим<br>доступу: https://www.paloaltonetworks.com/blog/security-operations/how-cortex-xdr-global-analytics-protects-againstsupply-chain-attacks/.<br>26. Antimalware Scan Interface (AMSI): [Електронний ресурс]. Режим доступу: https://learn.microsoft.com/<br>windows/win32/amsi/antimalware-scan-interface-portal.</p> 2025-06-28T17:23:43+00:00 ##submission.copyrightStatement## https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3246 INCREASING THE PRODUCTIVITY OF DECENTRALIZED DATABASES THROUGH OPTIMIZATION OF DATA FRAGMENTATION MECHANISMS IN BLOCKCHAIN NETWORKS 2025-06-28T17:48:43+00:00 Петрів П. П. (Petriv P.P.) szi@duikt.edu.ua Опірський І. Р. (Opirsky I.R.) szi@duikt.edu.ua <p>The article presents a comprehensive methodology for optimizing the performance of decentralized databases based on<br>blockchain technology by implementing specialized data fragmentation mechanisms. The current issues of scalability of<br>distributed registries and the limitations of existing sharding approaches in the context of highly loaded systems are investigated.<br>An innovative hierarchical data fragmentation model using dynamic shards and adaptive load redistribution based on the<br>analysis of data access patterns is proposed. A mathematical model for optimizing the distribution of transactions between<br>shards is developed, taking into account the minimization of cross-sharding operations and balancing the computational load.<br>An original data structure based on modified prefix trees with vector labels is implemented for effective query routing in a<br>fragmented environment. The results of a comprehensive experimental study on a test bench with 64 nodes demonstrate an<br>increase in overall transaction throughput by 37-42% compared to traditional sharding approaches and a decrease in query<br>processing latency by 28% while maintaining the level of decentralization and cryptographic stability of the system. A<br>particularly significant improvement in performance (up to 60%) is observed for cross-sharding operations due to the<br>implementation of an optimized two-phase protocol with elements of batching and pre-validation. The proposed methodology<br>allows to effectively overcome the existing limitations of the "blockchain trilemma" by intelligently optimizing data structures<br>and consensus mechanisms, while maintaining the required level of security and decentralization of the system, which is<br>confirmed by resistance to a wide range of attacks even when a significant proportion of nodes in individual shards are<br>compromised. In addition to increasing performance, the developed methodology provides a number of additional advantages,<br>including: improved adaptability to changes in the nature of the load and data access patterns; reduced resource requirements of<br>individual network nodes due to effective distribution of computational load; increased resistance to attacks specific to sharding<br>architectures, such as "shard capture" and attacks aimed at violating the atomicity of cross-sharding transactions. The security<br>analysis demonstrates that the proposed model maintains a high level of protection even when up to 30% of nodes in the system<br>are compromised, while traditional sharding approaches demonstrate a critical decrease in stability already at 20-25% of<br>compromised nodes. The cost-effectiveness of the proposed methodology is confirmed by a 22-31% reduction in energy<br>consumption compared to existing solutions at the same level of performance, which makes it attractive for implementation in<br>corporate blockchain systems. The results obtained create the basis for further development of high-performance decentralized<br>data storage and processing systems capable of operating effectively under high loads while maintaining the key advantages of<br>blockchain technology in the context of transparency, integrity and data protection.<br><strong>Keywords</strong>: data fragmentation, sharding, scalability, performance, blockchain trilemma, distributed ledgers, consensus<br>mechanisms, smart contracts.</p> <p><strong>References</strong><br>1. Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Available at: https://<br>bitcoin.org/bitcoin.pdf.<br>2. Croman, K., Decker, C., Eyal, I., Gencer, A. E., Juels, A., Kosba, A., Miller, A., Saxena, P., Shi, E., Sirer, E.<br>G., Song, D., &amp; Wattenhofer, R. (2016). On Scaling Decentralized Blockchains. In Financial Cryptography and Data<br>Security (pp. 106-125). Springer Berlin Heidelberg.<br>3. Buterin, V. (2014). A Next-Generation Smart Contract and Decentralized Application Platform. White Paper.<br>4. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., &amp; Saxena, P. (2016). A Secure Sharding Protocol<br>For Open Blockchains. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,<br>17-30.<br>5. Wang, S., Dinh, T. T. A., Lin, Q., Xie, Z., Zhang, M., Cai, Q., Chen, G., Fu, B., Nguyen, B. C., &amp; Ooi, B. C.<br>(2019). Forkbase: An Efficient Storage Engine for Blockchain and Forkable Applications. Proceedings of the VLDB<br>Endowment, 12(7), 764-777.<br>6. Wang, L., Shen, X., Li, J., Shao, J., &amp; Yang, Y. (2019). Cryptographic primitives in blockchains. Journal of<br>Network and Computer Applications, 127, 43-58.<br>7. Zamani, M., Movahedi, M., &amp; Raykova, M. (2018). RapidChain: Scaling Blockchain via Full Sharding.<br>Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, 931-948.<br>8. Buterin, V., Hernandez, D., Kamphefner, T., Pham, K., Qiao, Z., Ryan, D., Sin, J., Wang, Y., &amp; Zhang, Y. X.<br>(2020). Combining GHOST and Casper. ArXiv:2003.03052.<br>9. Dang, H., Dinh, T. T. A., Loghin, D., Chang, E.-C., Lin, Q., &amp; Ooi, B. C. (2019). Towards Scaling Blockchain<br>Systems via Sharding. Proceedings of the 2019 International Conference on Management of Data, 123-140.<br>10. Nguyen, G. T., &amp; Kim, K. (2018). A Survey about Consensus Algorithms Used in Blockchain. Journal of<br>Information Processing Systems, 14(1), 101-128.<br>11. Dinh, T. T. A., Wang, J., Chen, G., Liu, R., Ooi, B. C., &amp; Tan, K.-L. (2017). BLOCKBENCH: A Framework<br>for Analyzing Private Blockchains. Proceedings of the 2017 ACM International Conference on Management of Data,<br>1085-1100.<br>12. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., &amp; Ford, B. (2018). OmniLedger: A Secure,<br>Scale-Out, Decentralized Ledger via Sharding. 2018 IEEE Symposium on Security and Privacy (SP), 583-598.<br>13. Kim, S., Kwon, Y., &amp; Cho, S. (2018). A Survey of Scalability Solutions on Blockchain. 2018 International<br>Conference on Information and Communication Technology Convergence (ICTC), 1204-1207.<br>14. Tovanich, N., Heulot, N., Fekete, J. D., &amp; Isenberg, P. (2019). Visualization of Blockchain Data: A Systematic<br>Review. IEEE Transactions on Visualization and Computer Graphics, 25(10), 2893-2905.<br>15. Xiao, Y., Zhang, N., Lou, W., &amp; Hou, Y. T. (2020). A Survey of Distributed Consensus Protocols for<br>Blockchain Networks. IEEE Communications Surveys &amp; Tutorials, 22(2), 1432-1465.</p> 2025-06-28T17:34:08+00:00 ##submission.copyrightStatement## https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3247 COMPARATIVE STUDY OF VECTOR DATABASES BASED ON ANN FOR FAST AND ACCURATE FACE RECOGNITION IN DIGITAL FORENSICS 2025-06-28T17:48:50+00:00 Фединишин Т. О. (Fedynishyn T.O.) szi@duikt.edu.ua Партика О. О. (Partyka O.O.) szi@duikt.edu.ua <p>The rapid growth of biometric data and the growing need for accurate face verification in the field of digital forensics<br>have necessitated the creation of scalable and efficient facial image search systems. This paper presents a comparative study of<br>five vector search algorithms — HNSW, Faiss, Annoy, PyNNDescent, and Nearest Neighbors — for face identification tasks<br>based on vector representations (embeddings). The experiment was designed taking into account conditions close to real forensic<br>scenarios, with a focus on such key evaluation metrics as Top-1 accuracy, similarity coefficient distribution, and query<br>processing time. All tested methods demonstrated high accuracy (over 91%), but significant differences were recorded between<br>them in terms of match confidence and speed. Faiss showed the highest similarity indicators, which indicates better search<br>accuracy, although it required significantly more computational resources. In contrast, the HNSW and PyNNDescent algorithms<br>provided near-instantaneous query processing with competitive accuracy, but with higher variability in the quality of results.<br>Annoy proved to be a compromise solution that combines high accuracy with low latency. The results highlight important tradeoffs between accuracy, confidence, and efficiency, providing valuable guidelines for selecting optimal vector search<br>technologies in facial recognition systems in forensics. In addition, the study proposed a reproducible benchmarking<br>methodology that can be used to further evaluate biometric search tools in law enforcement and security.<br><strong>Keywords</strong>: vector search, facial recognition, digital forensics, HNSW, Faiss, Annoy, PyNNDescent, biometric<br>identification.</p> <p><strong>References</strong><br>1. Taigman, Y., Yang, M., Ranzato, M., &amp; Wolf, L. (2014). DeepFace: Closing the Gap to Human-Level<br>Performance in Face Verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition<br>(CVPR). https://doi.org/10.1109/CVPR.2014.220.<br>2. Johnson, J., Douze, M., &amp; Jégou, H. (2019). Billion-scale similarity search with GPUs. IEEE Transactions on<br>Big Data, 7(3), 535–547. https://doi.org/10.1109/TBDATA.2019.2921572.<br>3. Facebook AI Research. Faiss: A library for efficient similarity search and clustering of dense vectors.<br>https://doi.org/10.48550/arXiv.1702.08734.<br>4. Bernhardsson, E. (2015). Annoy: Approximate Nearest Neighbors in C++/Python. GitHub Repository.<br>https://doi.org/10.5281/zenodo.3528499.<br>5. Malkov, Y. A., &amp; Yashunin, D. A. (2020). Efficient and robust approximate nearest neighbor search using<br>Hierarchical Navigable Small World graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(4),<br>824–836. https://doi.org/10.1109/TPAMI.2018.2889473.<br>6. McInnes, L., Healy, J., &amp; Melville, J. (2018). UMAP: Uniform Manifold Approximation and Projection for<br>Dimension Reduction. arXiv preprint. https://doi.org/10.48550/arXiv.1802.03426.<br>7. Malkov, Y. A., &amp; Yashunin, D. A. (2020). Efficient and robust approximate nearest neighbor search using<br>Hierarchical Navigable Small World graphs. IEEE TPAMI, 42(4), 824–836. https://doi.org/10.1109/TPAMI.<br>2018.2889473.<br>8. Johnson, J., Douze, M., &amp; Jégou, H. (2019). Billion-scale similarity search with GPUs. IEEE Transactions on<br>Big Data, 7(3), 535–547. https://doi.org/10.1109/TBDATA.2019.2921572.<br>9. Guo, Y., Zhang, L., Hu, Y., He, X., &amp; Gao, J. (2020). Deep learning for image retrieval: Recent progress and<br>challenges. Pattern Recognition, 104, 107199. https://doi.org/10.1016/j.patcog.2020.107199 Zhang, L., Lin, Y., &amp; Sun,<br>M. (2021). Comparative evaluation of large-scale face retrieval systems. Neurocomputing, 443, 164–175.<br>https://doi.org/10.1016/j.neucom.2021.02.059.<br>10. Bernhardsson, E. (2019). Annoy: Approximate Nearest Neighbors in C++/Python. GitHub/Zenodo. https://<br>doi.org/10.5281/zenodo.3528499.<br>11. McInnes, L., Healy, J., &amp; Astels, S. (2020). UMAP and PyNNDescent for high-speed neighbor finding. arXiv<br>preprint. https://doi.org/10.48550/arXiv.2007.11462.<br>12. Pedregosa, F. et al. (2011). Scikit-learn: Machine learning in Python. JMLR, 12, 2825–2830.<br>https://doi.org/10.48550/arXiv.1201.0490 Aumüller, M., Bernhardsson, E., &amp; Faithfull, A. (2020). ANN-benchmarks: A<br>benchmarking tool for approximate nearest neighbor algorithms. arXiv preprint. https://doi.org/10.48550/arXiv.<br>1608.03908.<br>13. Zhang, R., Wang, D., &amp; Tan, C. (2021). A comparative study of ANN methods in face embedding retrieval.<br>Journal of Forensic Sciences, 66(4), 1281–1292. https://doi.org/10.1111/1556-4029.14663.<br>14. Deng, J., Guo, J., Xue, N., &amp; Zafeiriou, S. (2019). ArcFace: Additive angular margin loss for deep face<br>recognition. CVPR. https://doi.org/10.1109/CVPR.2019.00482.<br>15. Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., &amp; Liu, W. (2018). CosFace: Large margin cosine<br>loss for deep face recognition. CVPR. https://doi.org/10.1109/CVPR.2018.00482.<br>16. Huang, Y., Wang, Y., &amp; Chen, C. (2020). CurricularFace: Adaptive curriculum learning loss for deep face<br>recognition. CVPR. https://doi.org/10.1109/CVPR42600.2020.00487.<br>17. Kumar, A., &amp; Singh, R. (2020). Face recognition for crime analysis and suspect identification: A survey. ACM<br>Computing Surveys, 53(6), 1–37. https://doi.org/10.1145/3417980.<br>18. Zhong, Y., Zheng, L., Cao, D., &amp; Li, S. Z. (2022). Face re-identification with video surveillance in forensic<br>scenarios. IEEE TBIOM, 4(3), 371–384. https://doi.org/10.1109/TBIOM.2022.3144896.<br>19. Choi, J., &amp; Yoon, S. (2021). Forensic triage on smartphones: Machine learning-assisted image retrieval. Digital<br>Investigation, 37, 301066. https://doi.org/10.1016/j.diin.2021.301066.<br>20. Bui, T., &amp; Huynh, D. (2020). Person identification from mobile gallery photos. Forensic Science International:<br>Digital Investigation, 33, 300957. https://doi.org/10.1016/j.fsidi.2020.300957.<br>21. Savić, M., &amp; Radojević, B. (2019). Forensic-level face retrieval with occlusion handling. Pattern Recognition<br>Letters, 128, 496–503. https://doi.org/10.1016/j.patrec.2019.09.003.<br>22. Goyal, S., &amp; Katarya, R. (2022). Explainable ANN-based systems for forensic decisions. IEEE Access, 10,<br>45632–45644. https://doi.org/10.1109/ACCESS.2022.3170081.<br>23. Sommers, R., &amp; Hernandez-Orallo, J. (2021). Fairness and transparency in face recognition retrieval systems.<br>Ethics and Information Technology, 23(3), 389–406. https://doi.org/10.1007/s10676-021-09602-w.<br>24. Wang, L., Song, W., &amp; Tang, Y. (2022). Real-time vector search optimization for edge computing. Journal of<br>Parallel and Distributed Computing, 164, 27–37. https://doi.org/10.1016/j.jpdc.2022.03.005.<br>25. Bhattacharya, S., &amp; Singh, N. (2021). Lightweight ANN frameworks for mobile forensics. Mobile Networks<br>and Applications, 26(4), 1580–1594. https://doi.org/10.1007/s11036-021-01768-z.<br>26. O. Mykhaylova, et al., Person-of-Interest Detection on Mobile Forensics Data—AI-Driven Roadmap, in:<br>Cybersecurity Providing in Information and Telecommunication Systems, vol. 3654 (2024) 239–251.</p> 2025-06-28T17:41:23+00:00 ##submission.copyrightStatement## https://journals.duikt.edu.ua/index.php/dataprotect/article/view/3248 METHOD OF DETECTING VULNERABILITIES AND AUTOMATED RESPONSE IN CORPORATE DATABASE PROTECTION SYSTEMS 2025-06-28T17:48:58+00:00 Будзинський О. В. (Budzynskyi O.V.) szi@duikt.edu.ua <p>The article proposes a scientifically based method for detecting vulnerabilities and automated response in corporate<br>database protection systems operating in modern network infrastructure. The relevance of the study is due to the increasing<br>complexity of cyberattacks, the increase in data volumes, and the spread of cloud technologies, which significantly complicate<br>access control and make it impossible to use only traditional approaches to ensuring the security of database management<br>systems. A multi-level architecture is proposed, which is based on a combination of user behavior analysis models and<br>mathematical risk assessment of database queries. Each SQL query is described by a vector of features that are analyzed using<br>the Isolation Forest model. The determined threat level allows for the formation of a combined risk assessment that integrates<br>behavioral anomaly and query criticality. Based on this assessment, a real-time automatic response mechanism is implemented<br>- in particular, access blocking, SOC notification, and possible launch of scripts via a plug-in for the SIEM system. A feature of<br>the method is the possibility of its adaptation to real IT infrastructures, which is ensured by the modularity of the system and<br>compatibility with existing monitoring tools. The proposed method is an innovative combination of behavioral analysis, adaptive<br>machine learning and automated response in a single architecture for protecting corporate databases. Its distinctive features are<br>proactivity, flexibility of response, preventive action before executing a request and the possibility of integration with existing<br>SOC solutions. The effectiveness of the method is confirmed by the results of modeling, in particular by comparison with other<br>approaches using completeness metrics and ROC curves. The proposed solution has practical significance for increasing the<br>resilience of corporate database management systems to internal and external threats.<br><strong>Keywords</strong>: information security, database protection, detection of access anomalies, response automation.</p> <p><strong>References</strong><br>1. Omotunde, H., &amp; Ahmed, M. (2023). A Comprehensive Review of Security Measures in Database Systems:<br>Assessing Authentication, Access Control, and Beyond. Mesopotamian Journal of Cyber Security, 115–133.<br>https://doi.org/10.58496/mjcsc/2023/016.<br>2. Touil, H., El Akkad, N., Satori, K., Soliman, N. F., &amp; El-Shafai, W. (2024). Efficient Braille Transformation<br>for Secure Password Hashing. IEEE Access, 1. https://doi.org/10.1109/access.2024.3349487.<br>3. Pan, X., Obahiaghon, A., Makar, B., Wilson, S., &amp; Beard, C. (2024). Analysis of Database Security. OALib,<br>11(04), 1–19. https://doi.org/10.4236/oalib.1111366.<br>4. Wang, Y., Xi, J., &amp; Cheng, T. (2021). The Overview of Database Security Threats’ Solutions: Traditional and<br>Machine Learning. Journal of Information Security, 12(01), 34–55. https://doi.org/10.4236/jis.2021.121002.<br>5. Almaiah, M. A., Saqr, L. M., Al-Rawwash, L. A., Altellawi, L. A., Al-Ali, R., &amp; Almomani, O. (2024).<br>Classification of Cybersecurity Threats, Vulnerabilities and Countermeasures in Database Systems. Computers, Materials<br>&amp; Continua, 1–10. https://doi.org/10.32604/cmc.2024.057673.<br>6. Ilyenko, A., Ilyenko, S., Diana, K., &amp; Mazur, Y. (2023). Практичні підходи щодо виявлення вразливостей<br>в інформаційно-телекомунікаційних мережах. Електронне фахове наукове видання «Кібербезпека: освіта, наука,<br>техніка», 3(19), 96–108. https://doi.org/10.28925/2663-4023.2023.19.96108.<br>7. Mosope Williams &amp; Tina Charles Mbakwe-Obi. (2024). Integrated strategies for database protection:<br>Leveraging anomaly detection and predictive modelling to prevent data breaches. World Journal of Advanced Research<br>and Reviews, 24(3), 1098–1115. https://doi.org/10.30574/wjarr.2024.24.3.3795.<br>8. Щавінський, Ю., &amp; Будзинський, О. (2025). Аналіз актуальних проблем безпеки корпоративних баз<br>даних в умовах сучасної інфраструктури та шляхи їх вирішення . Електронне фахове наукове видання<br>«Кібербезпека: освіта, наука, техніка», 3(27), 390–405. https://doi.org/10.28925/2663-4023.2025.27.726.<br>9. Савченко,В. А., Смолєв,Є. С., &amp; Гамза,Д. Є.(2023). Методика виявлення аномалій взаємодії<br>користувачів з інформаційними ресурсами організації. Сучасний захист інформації, 4(56), 6–12. https://doi.org/<br>10.31673/2409-7292.2023.030101.<br>10. Xu, H., Pang, G., Wang, Y., Wang, Y. (2023). Deep Isolation Forest for Anomaly Detection. IEEE Trans. on<br>Knowl. and Data Eng. 35(12), 12591–12604. (2023). https://doi.org/10.1109/TKDE.2023.3270293.</p> 2025-06-28T17:45:20+00:00 ##submission.copyrightStatement##